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Preface

The theory of switched systems concerns hybrid dynamical systems composed of a family 
of continuous–time subsystems and a switching law, orchestrating switching between 
these subsystems. Systems of this class have been identified in many natural and man–
made systems, and are recently widely studied by control theorists, computer scientists, 
practicing engineers and others. Dynamical systems of heterogeneous nature have numerous 
applications in control of robotic, mechatronic and mechanical systems, gene regulatory 
networks, automotive industry, aircraft and air traffic control, switching power converters, 
and also in communication networks, embedded systems, and in many other fields. From the 
control–theoretic perspective, the most important issues concerning the switched systems are 
the following: controllability, observability, stabilization and optimal control. A considerable 
amount of researchers’ effort has been put into mathematical, simulational and practical 
evaluation of these factors. 

This book presents selected issues related to switched systems, including practical examples 
of such systems. It starts with the analysis of stabilization of saturated switching systems and 
focuses on available results for switching systems being subject to actuator saturations. In 
Chapter 2 a methodology for robust adaptive control design for a class of switched nonlinear 
systems is presented. The authors show that it is possible to obtain a separation between 
robust stability and robust performance, and clear guidelines for performance optimization 
via ISS bounds. Chapter 3 is devoted to the design of stabilizing feedback controllers for state–
dependent switched nonlinear control system, based on a switched control Lyapunov function 
approach. The robust H∞ control for linear switched systems with time delay is studied in 
Chapter 4. The application of the Linear Parameter Varying method for the design of integrated 
vehicle control systems, in which several active components are used in co-operation, is 
discussed in Chapter 5. Chapters 6-8 are related to issues concerning communication systems. 
The analysis of non–exhaustive cyclic service systems with finite capacity, using state space 
modeling technique, is performed in Chapter 6. A switching network for packet network 
node and packet dispatching algorithms are presented in Chapter 7, while the modeling and 
analysis of reliability, availability and serviceability, against hardware faults, for the Sun 
Datacenter Switch 3456 system is proposed in Chapter 8. 
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This book is intended for people interested in switched systems, especially researchers and 
engineers. Graduate and undergraduate students in the area of switched systems can find this 
book useful to broaden their knowledge concerning control and switching systems. I would 
like to thank all scientists who have contributed to this book. Gratitude should be shown also 
to the team at InTech for the initiative and help in publishing this anticipated book. 

Editor 
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1. INTRODUCTION

Switched systems are a class of hybrid systems encountered in many practical situations
which involve switching between several subsystems depending on various factors. Gen-
erally, a switching system consists of a family of continuous-time subsystems and a rule that
supervises the switching between them. This class of systems have numerous applications
in the control of mechanical systems, the automotive industry, aircraft and air traffic control,
switching power converters and many other fields. Two main problems are widely studied
in the literature according to the classification given in (Blanchini and Savorgnan, 2006): The
first one, which is the one solved in this work, looks for testable conditions that guarantee the
asymptotic stability of a switching system under arbitrary switching rules, while the second
is to determine a switching sequence that renders the switched system asymptotically sta-
ble (see (Liberzon and Morse, 1999) and the reference therein). Following the first approach,
(Blanchini et al., 2009) investigate the problem of designing a switching compensator for a
plant switching amongst a (finite) family of given configurations (Ai, Bi, Ci).
A main problem which is always inherent to all dynamical systems is the presence of actuator
saturations. Even for linear systems, this problem has been an active area of research for many
years. Besides approaches using anti-windup techniques (Mulder et al., 2004) and model pre-
dictive controls (Camacho and Bordons, 2004), two main approaches have been developed
in the literature: The first is the so-called positive invariance approach which is based on the
design of controllers which work inside a region of linear behavior where saturations do not
occur (see (Benzaouia and Burgat, 1988), (Benzaouia and Hmamed, 1993), (Blanchini, 1999)
and the references therein). This approach has already being applied to a class of hybrid sys-
tems involving jumping parameters (Benzaouia and Boukas, 2002). It has also been used to
design controllers for switching systems with constrained control under complete modelling
taking into account reset functions at each switch and different system’s dimension . The
second approach, however allows saturations to take effect while guaranteeing asymptotic
stability (see (Nguyen and Jabbari, 1999, 2000), (Tarbouriech et al., 2006), ( Hu et al., 2002)-
(Hu and Lin, 2002), (Benzaouia et al., 2006) and the references therein). The main challenge
in these two approaches is to obtain large domains of initial states which ensures asymptotic
stability for the system despite the presence of saturations (Gilbert and Tan 1991), (Benzaouia
and Baddou, 1999), (Benzaouia et al., 2002), ( Hu et al., 2002).
The objective of this chapter is to present the available results in the literature for switching
systems subject to actuator saturations. These results follow generally two ways: the first con-
cerns the synthesis of non saturating controllers ( controllers working inside a large region
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of linear behavior where the saturations do not occur), while the second extends the results
obtained for unsaturated switching systems by ( Mignone et al., 2000), ( Ferrari-Trecate et al.,
2001) and ( Daafouz et al., 2001, 2002) leading to saturating controllers ( controllers tolerating
saturations to take effect). The second method was firstly used in (Benzaouia et al., 2004) with
the use of a multiple Lyapunov function. However, only the intersection of all the correspond-
ing level sets of the local functions was considered as a region of asymptotic stability of the
switching system. This drawback is improved in (Benzaouia et al., 2006) and (Benzaouia et al.,
2009a) by considering, for the first time, a large set of asymptotic stability composed by the
union of all the level sets.
In this context, two main different sufficient conditions of asymptotic stability were obtained
for switching systems subject to actuator saturations. Furthermore, these conditions were pre-
sented in the form of LMIs for the state feedback control case. A particular attention was given
to the output feedback case which has an additive complexity due to the output equation. It
was also shown that the LMIs obtained for computing controllers working inside a large re-
gion of linear behavior are less conservative.
The obtained results are then extended to uncertain switching system subject to actuator sat-
urations as developed in (Benzaouia et al., 2009b) and (Benzaouia et al., 2009c) respectively.
The uncertainty types considered in these two works are the polytopic one and the struc-
tured one. This second type of uncertainty was also studied, without saturation, in (Hetel et
al., 2006). Thus, in this work (Benzaouia et al., 2009a), two directions are explored: the first
concerns the synthesis of non saturating controllers, while the second direction deals with
controllers tolerating saturations to take effect under polytopic uncertainties. For structured
uncertainties studies in (Benzaouia et al., 2009b), the synthesis of the controller follows two
different approaches, the first one deals firstly with the nominal system and then uses a test
to check the asymptotic stability in presence of uncertainties while the second considers the
global representation of the uncertain system.

2. Stabilization of switching systems subject to actuator saturation

2.1 PROBLEM FORMULATION
In this section, we give a more precise problem statement for the class of systems under con-
sideration, namely, discrete-time switching linear systems with input saturation and state or
output feedback. An equivalent description of such systems, based on the indicator function
is also used in this work. The main results of this section are published in (Benzaouia et al.,
2009a).
Thus, we consider systems described by:

x(t + 1) = Aαx(t) + Bαsat(u(t)) (1)

y(t) = Cαx(t)

where x ∈ Rn is the state, u ∈ Rm is the control, y ∈ Rp is the output, sat(.) is the
standard saturation function and α a switching rule which takes its values in the finite set
ℐ := {1, . . . , N}, t ∈ Z+. The saturation function is assumed here to be normalized, i. e.,
(∣sat(u)∣ = min{1, ∣u∣}). Each subsystem α is called a mode.

Definition 2.1. (Lygeros et al., 1999) An hybrid time basis τ is an infinite or finite sequence of sets
Is = {t ∈ N : ts ≤ t ≤ t̄s}, with t̄s = ts+1 for s ∈ ℒ = {0, . . . , L}, and if card(τ) = L + 1 < ∞
then t̄L can be finite or infinite.

Throughout this chapter, it is assumed that:

• The switching system is stabilizable;

• Matrices Cα are of full rank;

• ts+1 ≥ ts + 1, ∀s ∈ ℒ;

• the switching rule is not known a priori but α(t) is available at each t.

The third assumption ensures that at each time only one subsystem is active. The fourth as-
sumption corresponds to practical implementations where the switched system is supervised
by a discrete-event system or operator allowing for α(t) to be known in real time.
In this work, we are interested by the synthesis of stabilizing controllers for this class of hybrid
systems subject to actuator saturation. We use a feedback control law as:

u(t) = Fαx(t) = Kαy(t), (2)

and write the closed-loop system as

x(t + 1) = Aαx(t) + Bαsat(Fαx(t)). (3)

= Aαx(t) + Bαsat(Kαy(t))

Upon introducing the indicator function:

ξ(t) = [ξ1(t), . . . , ξN(t)]T (4)

where ξi(t) = 1 if the switching system is in mode i and ξi(t) = 0 if it is in a different mode,
one can write the closed-loop system (3) as follows:

x(t + 1) =
N

∑
i=1

ξi(t)[Aix(t) + Bisat(Fix(t))]. (5)

=
N

∑
i=1

ξi(t)[Aix(t) + Bisat(KiCix(t))]

2.2 PRELIMINARY RESULTS
In this section, we recall two results on which our work is based. Let α be fixed. Then System
(3) becomes a linear time-invariant system with input saturation given by:

x(t + 1) = Ax(t) + Bsat(Fx(t)) (6)

Define the following subsets of Rn:

ε(P, ρ) = {x ∈ Rn∣xT Px ≤ ρ}, (7)

ℒ(F) = {x ∈ Rn∣∣Fl x∣ ≤ 1, l = 1, . . . , m}, (8)

with P a positive definite matrix, ρ > 0 and Fl the lth row of the matrix F ∈ Rm×n. Thus
ε(P, ρ) is an ellipsoid while ℒ(F) is a polyhedral consisting of states for which the saturation
does not occur.

Lemma 2.1. (Hu et al., 2002) For all u ∈ Rm and v ∈ Rm such that ∣vl ∣ < 1, l ∈ [1, m]

sat(u) ∈ co{Dsu + D−
s v, s ∈ [1, η]} ; η = 2m (9)

where co denotes the convex hull.
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Consequently, there exist δ1 ≥ 0, . . . , δη ≥ 0 with ∑
η
s=1 δs = 1 such that,

sat(u) =
η

∑
s=1

δs[Dsu + D−
s v] (10)

Here, Ds is an m by m diagonal matrix with elements either 1 or 0 and D−
s = Im − Ds. There

are 2m possible such matrices. One can also consult the work of (Benzaouia et al., 2006) for
more details and other extensions to linear systems with both constraints on the control and
the increment or rate of the control.
Consider the following autonomous switching system:

x(t + 1) =
N

∑
i=1

ξi(t)Aix(t) (11)

The use of the Lyapunov functions revealed two ways:

• The existence of a common Lyapunov function to the various subsystems guarantees
the asymptotic stability of the switching system. In general, the search for such function
is not always obvious (Shorten and Narenda, 1997, 1998).

• The multiple Lyapunov functions were introduced in (Branicky, 1998). They are con-
sidered as a strong tool in the analysis of the stability of the hybrid systems and in
particular the switching systems.

Proposition 2.1. (Branicky, 1998) If there exists a multiple Lyapunov function V(t, x), t ∈ Is, with
V : N × Rn −→ R+, such that the following hold:

• ∆V(t, x(t)) < 0, for any time t ∈ Is

• V(tk, x(tk)) < V(tk−1, x(tk−1), ∀k ∈ ℒ
then, the switching autonomous system (11) is asymptotically stable.

We now recall a useful stability result for switching systems with no input saturations pre-
sented by many authors ( see ( Mignone et al., 2000), ( Ferrari-Trecate et al., 2001) and ( Daafouz
et al., 2001, 2002)) firstly used for linear time varying systems ( Daafouz and Bernussou, 2001).

Theorem 2.1. The closed-loop switching system (11) is asymptotically stable at the origin if there exist
N symmetric and positive definite matrices P1, . . . , PN satisfying,

AT
i Pj Ai − Pi < 0, ∀(i, j) ∈ ℐ × ℐ (12)

A corresponding Lyapunov function for the system is then given by:

V(t, x) = xT(t)(
N

∑
i=1

ξi(t)Pi)x(t) (13)

It is worth to note that function V(t, x), which is a multiple Lyapunov function candidate
involving matrices Pi, can be seen as a standard Lyapunov function candidate. It was the way
followed by (Mignone et al., 2000) and (Daafouz et al., 2001, 2002). Further, condition (12) is
equivalent, by using Schur complement to,

[
Pi AT

i Pj
∗ Pj

]
> 0 , ∀(i, j) ∈ ℐ × ℐ (14)

where ∗ denotes the transpose of the off diagonal element of the LMI. Subsequently, we will
need the following equivalent LMI representation of (14):

[
Xi Xi AT

i
∗ Xj

]
> 0 , ∀(i, j) ∈ ℐ × ℐ (15)

where Xi = P−1
i . By noting that inequality (12) is equivalent to:

Gi AT
i Pj AiGT

i − GiPiGT
i < 0, ∀(i, j) ∈ ℐ × ℐ (16)

for any nonsingular matrix Gi. By using the fact that (Gi − Xi)
T X−1

i (Gi − Xi) ≥ 0, implies
GiX−1

i GT
i ≥ Gi + GT

i − Xi. The LMI (15) is also in turn equivalent to the following LMI,
generally used to relax the previous one (Daafouz et al., 2001, 2002):

[
Gi + GT

i − Xi GT
i AT

i
∗ Xj

]
> 0, ∀(i, j) ∈ ℐ × ℐ (17)

where matrices Gi called slack variables are nonsingular matrices and Xi the positive definite
matrices.
It is worth nothing that condition (12) has to be satisfied ∀(i, j) ∈ ℐ × ℐ , in particular for i = j.
This means that each mode is necessarily asymptotically stable and Vi(t, x) = xT(t)Pix(t) is
the associated Lyapunov function. Recall that a level set of the Lyapunov function V(t, x)
given by (13) and associated to the switching system (11) is given by the set ε(P, ρ) defined
by (7) with P = ∑N

i=1 ξi(t)Pi. This region of asymptotic stability is very difficult to construct.
Nevertheless, an estimate can be obtained as large as possible as presented in the next section
based on the union of the sub-level ellipsoid sets ε(Pi, 1). Other type of level sets obtained
with different Lyapunov functions for switched systems can be found in (Hu et al., 2006). A
useful lemma is also recalled.

Lemma 2.2. Let R, S and Γ be matrices with appropriate dimension. Suppose ΓTΓ ≤ I, then for any
scalar λ > 0, we have:

RΓS + STΓT RT ≤ λRRT + λ−1SST (18)

2.3 Analysis and synthesis of stabilizability
In this section, the region of local asymptotic stability associated to the saturated switching
system is firstly studied. The design of a stabilizing controller for the class of switching system
with actuator saturation is then presented by following two ways, the first concerns controllers
working inside the region of linear behavior where the saturations do not occur while the
second is based on Lemma 2.1 tolerating saturations to occur.

2.3.1 Region of asymptotic stability
The link between the result of Theorem 2.1 and the level set (7) is not mentioned in (Mignone
et al., 2000) nor in (Daafouz et al., 2001, 2002). The absence of saturation on the control of the
switching systems in these works does not necessitate to take care with the level sets since
the asymptotic stability is global. We present here after an interesting result on this subject
inspired from the general class studied in (Benzaouia et al., 2007).
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with different Lyapunov functions for switched systems can be found in (Hu et al., 2006). A
useful lemma is also recalled.

Lemma 2.2. Let R, S and Γ be matrices with appropriate dimension. Suppose ΓTΓ ≤ I, then for any
scalar λ > 0, we have:

RΓS + STΓT RT ≤ λRRT + λ−1SST (18)

2.3 Analysis and synthesis of stabilizability
In this section, the region of local asymptotic stability associated to the saturated switching
system is firstly studied. The design of a stabilizing controller for the class of switching system
with actuator saturation is then presented by following two ways, the first concerns controllers
working inside the region of linear behavior where the saturations do not occur while the
second is based on Lemma 2.1 tolerating saturations to occur.

2.3.1 Region of asymptotic stability
The link between the result of Theorem 2.1 and the level set (7) is not mentioned in (Mignone
et al., 2000) nor in (Daafouz et al., 2001, 2002). The absence of saturation on the control of the
switching systems in these works does not necessitate to take care with the level sets since
the asymptotic stability is global. We present here after an interesting result on this subject
inspired from the general class studied in (Benzaouia et al., 2007).
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Theorem 2.2. If there exist N symmetric positive definite matrices P1, . . . , PN such that the inequali-
ties (12) are satisfied then the set given by,

Ω =
N∪

i=1
ε(Pi, 1) (19)

is a level set of the multiple Lyapunov function V(t, x) given by (13) with respect to the trajectories of
the autonomous switching system (11).

Proof: Note that condition (12) for i = j ensures that ∆V(t, x) < 0, for t ∈ Is, s ∈ ℒ (Daafouz
et al., 2001, 2002). Now let x(t̄k−1) ∈ ε(Pi, 1). What happens at the switching time t̄k−1?
For this, compute x(tk). With an identity reset function we have,

x(tk) = x(t̄k−1) (20)

The switch to the next region ε(Pj, 1) will be seen an unit time after,

x(tk + 1) = x(t̄k−1 + 1)

= Aix(t̄k−1) (21)

We have,

xT(tk + 1)Pjx(tk + 1) = xT(t̄k−1)
(

AT
i Pj Ai

)
x(t̄k−1) (22)

According to condition (12), one can obtain,

xT(tk + 1)Pjx(tk + 1) < xT(t̄k−1)Pix(t̄k−1) (23)

Since x(t̄k−1) ∈ ε(Pi, 1), then, x(tk + 1) ∈ ε(Pj, 1), ∀i, j ∈ ℐ × ℐ . This proves that V(tk, x(tk)) <
V(tk−1, x(tk−1)), ∀k ∈ ℒ. Consequently, function V(t, x) is a multiple Lyapunov function of
the switching system according to Proposition 2.1 and the set Ω is a level set associated to this
function. It is worth to note that the same reasoning holds for ε(Pj, ρ) for any positive scalar
ρ. □
Note that an important remark is to be done at this level: since the studied system is a switch-
ing one composed of N subsystems (modes), the switching system can be initialized inside
any level set ε(Pi, 1), however, the initial mode to be selected is the corresponding mode i.

2.3.2 State feedback control
We assume that the state is available, so a state feedback control can be performed. The first
result we present is a simple extension of known result given by (Gutman and Hagandar,
1985) for linear systems and concerns the synthesis of non saturating controllers ensuring that
a large region of linear behavior is a region of asymptotic stability.

Theorem 2.3. If there exists N symmetric matrices X1, . . . , XN and N matrices Y1, . . . , YN solutions
of the following LMIs:

[
Xi (AiXi + BiYi)

T

∗ Xj

]
> 0, (24)

[
1 Yli
∗ Xi

]
> 0, (25)

∀(i, j) ∈ ℐ × ℐ , ∀l ∈ [1, m]

where Yli is the lth row of matrix Yi; then the switching system with saturations in closed-loop (3),
with,

Fi = YiX−1
i , Pi = X−1

i (26)

is asymptotically stable at the origin ∀x0 ∈ Ω and for any sequences of switching α(t).

Proof: In order to guarantee that the control by state feedback is always admissible, each sub-
level set of the Lyapunov function has to be contained inside the polyhedral set where the
saturations do not occur ε(Pi, 1) ⊂ ℒ(Fi), ∀i ∈ ℐ (Gutman and Hagandar, 1985). Using (Boyd
et al., 1994), this inclusion condition can also be transformed to the equivalent LMI (25) by
letting Xi = P−1

i and FiXi = Yi. Let x(t) ∈ Ω, ∀t ∈ Is. According to condition (25), the system
in closed-loop (5) can be equivalently written as,

x(t + 1) =
N

∑
i=1

ξi(t)Aci x(t). (27)

with, Aci = Ai + BiFi. The proof follows from the asymptotic stability conditions of the
switching system given by Theorem 3.2, which is expressed equivalently by (15), with matrix
Aci instead of Ai. Further, Theorem 2.2 ensures that the set Ω is a set of asymptotic stability of
the switching system with saturations in closed-loop (3). □
To achieve a domain of attraction as large as possible, we can solve the following optimization
problem:

(Pb.1) :

⎧⎨
⎩

sup(Xi ,Yi)
Trace(Xi)

s.t. (24), (25),
i = 1, . . . , N

When this optimization problem is feasible, the obtained ellipsoid volumes are maximum
with respect to the data of the system.
The obtained LMIs (24) of Theorem 2.1 are similar to those obtained in (Mignone et al., 2000)
and (Ferrari-Trecate et al., 2001) for non saturated switching systems. The presence of satu-
ration on the control in our problem leads to the additional LMIs (25), which will obviously
restrict the set of solutions. Nevertheless, the associated large region of asymptotic stability Ω
for the saturated switching system enables one to conclude that these LMIs are not conserva-
tive.
The second result we present concerns the synthesis of saturating controllers tolerating satu-
rations to take effect inside a large region of asymptotic stability.

Theorem 2.4. If there exist symmetric positive definite matrices P1, . . . , PN ∈ Rn×n and matrices
H1, . . . , HN ∈ Rm×n such that,

[
Pi [Ai + Bi(DisFi + D−

is Hi)]
T Pj

∗ Pj

]
> 0 , (28)

∀(i, j) ∈ ℐ × ℐ , ∀s ∈ [1, η]

and,
ε(Pi, 1) ⊂ ℒ(Hi), ∀i ∈ ℐ (29)

then, the closed-loop switching system (3) is asymptotically stable at the origin ∀x0 ∈ Ω and for all
sequences of switching α(t).



Stabilization of saturated switching systems 7

Theorem 2.2. If there exist N symmetric positive definite matrices P1, . . . , PN such that the inequali-
ties (12) are satisfied then the set given by,

Ω =
N∪

i=1
ε(Pi, 1) (19)

is a level set of the multiple Lyapunov function V(t, x) given by (13) with respect to the trajectories of
the autonomous switching system (11).

Proof: Note that condition (12) for i = j ensures that ∆V(t, x) < 0, for t ∈ Is, s ∈ ℒ (Daafouz
et al., 2001, 2002). Now let x(t̄k−1) ∈ ε(Pi, 1). What happens at the switching time t̄k−1?
For this, compute x(tk). With an identity reset function we have,

x(tk) = x(t̄k−1) (20)

The switch to the next region ε(Pj, 1) will be seen an unit time after,

x(tk + 1) = x(t̄k−1 + 1)

= Aix(t̄k−1) (21)

We have,

xT(tk + 1)Pjx(tk + 1) = xT(t̄k−1)
(

AT
i Pj Ai

)
x(t̄k−1) (22)

According to condition (12), one can obtain,

xT(tk + 1)Pjx(tk + 1) < xT(t̄k−1)Pix(t̄k−1) (23)

Since x(t̄k−1) ∈ ε(Pi, 1), then, x(tk + 1) ∈ ε(Pj, 1), ∀i, j ∈ ℐ × ℐ . This proves that V(tk, x(tk)) <
V(tk−1, x(tk−1)), ∀k ∈ ℒ. Consequently, function V(t, x) is a multiple Lyapunov function of
the switching system according to Proposition 2.1 and the set Ω is a level set associated to this
function. It is worth to note that the same reasoning holds for ε(Pj, ρ) for any positive scalar
ρ. □
Note that an important remark is to be done at this level: since the studied system is a switch-
ing one composed of N subsystems (modes), the switching system can be initialized inside
any level set ε(Pi, 1), however, the initial mode to be selected is the corresponding mode i.

2.3.2 State feedback control
We assume that the state is available, so a state feedback control can be performed. The first
result we present is a simple extension of known result given by (Gutman and Hagandar,
1985) for linear systems and concerns the synthesis of non saturating controllers ensuring that
a large region of linear behavior is a region of asymptotic stability.

Theorem 2.3. If there exists N symmetric matrices X1, . . . , XN and N matrices Y1, . . . , YN solutions
of the following LMIs:

[
Xi (AiXi + BiYi)

T

∗ Xj

]
> 0, (24)

[
1 Yli
∗ Xi

]
> 0, (25)

∀(i, j) ∈ ℐ × ℐ , ∀l ∈ [1, m]

where Yli is the lth row of matrix Yi; then the switching system with saturations in closed-loop (3),
with,

Fi = YiX−1
i , Pi = X−1

i (26)

is asymptotically stable at the origin ∀x0 ∈ Ω and for any sequences of switching α(t).

Proof: In order to guarantee that the control by state feedback is always admissible, each sub-
level set of the Lyapunov function has to be contained inside the polyhedral set where the
saturations do not occur ε(Pi, 1) ⊂ ℒ(Fi), ∀i ∈ ℐ (Gutman and Hagandar, 1985). Using (Boyd
et al., 1994), this inclusion condition can also be transformed to the equivalent LMI (25) by
letting Xi = P−1

i and FiXi = Yi. Let x(t) ∈ Ω, ∀t ∈ Is. According to condition (25), the system
in closed-loop (5) can be equivalently written as,

x(t + 1) =
N

∑
i=1

ξi(t)Aci x(t). (27)

with, Aci = Ai + BiFi. The proof follows from the asymptotic stability conditions of the
switching system given by Theorem 3.2, which is expressed equivalently by (15), with matrix
Aci instead of Ai. Further, Theorem 2.2 ensures that the set Ω is a set of asymptotic stability of
the switching system with saturations in closed-loop (3). □
To achieve a domain of attraction as large as possible, we can solve the following optimization
problem:

(Pb.1) :

⎧⎨
⎩

sup(Xi ,Yi)
Trace(Xi)

s.t. (24), (25),
i = 1, . . . , N

When this optimization problem is feasible, the obtained ellipsoid volumes are maximum
with respect to the data of the system.
The obtained LMIs (24) of Theorem 2.1 are similar to those obtained in (Mignone et al., 2000)
and (Ferrari-Trecate et al., 2001) for non saturated switching systems. The presence of satu-
ration on the control in our problem leads to the additional LMIs (25), which will obviously
restrict the set of solutions. Nevertheless, the associated large region of asymptotic stability Ω
for the saturated switching system enables one to conclude that these LMIs are not conserva-
tive.
The second result we present concerns the synthesis of saturating controllers tolerating satu-
rations to take effect inside a large region of asymptotic stability.

Theorem 2.4. If there exist symmetric positive definite matrices P1, . . . , PN ∈ Rn×n and matrices
H1, . . . , HN ∈ Rm×n such that,

[
Pi [Ai + Bi(DisFi + D−

is Hi)]
T Pj

∗ Pj

]
> 0 , (28)

∀(i, j) ∈ ℐ × ℐ , ∀s ∈ [1, η]

and,
ε(Pi, 1) ⊂ ℒ(Hi), ∀i ∈ ℐ (29)

then, the closed-loop switching system (3) is asymptotically stable at the origin ∀x0 ∈ Ω and for all
sequences of switching α(t).
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Proof: Assume that there exist N matrices H1, . . . , HN and N symmetric matrices P1, . . . , PN
such that condition (28) and (29) are satisfied. Using the expression in (10) and rewriting
System (3) as in (5) yields that:

sat(Fix(t)) =
η

∑
s=1

δis(t)[DisFi + D−
is Hi]x(t) ; (30)

δsi(t) ≥ 0,
η

∑
s=1

δsi(t) = 1 (31)

and, subsequently :

x(t + 1) =
η

∑
s=1

N

∑
i=1

ξi(t)δis(t)Acisx(t); (32)

Acis := Ai + Bi(DisFi + D−
is Hi), s ∈ [1, η]

The rate of change of the Lyapunov function candidate (13) along the trajectories of (32) is
given by:

∆V(t, x(t)) = xT(t + 1)(
N

∑
j=1

ξ j(t + 1)Pj)x(t + 1)− xT(t)(
N

∑
i=1

ξi(t)Pi)x(t) = xT(t) (33)

⎡
⎣
(

η

∑
s=1

N

∑
i=1

ξi(t)δis(t)Acis

)T
⎛
⎝ N

∑
j=1

ξ j(t + 1)Pj

⎞
⎠

(
η

∑
s=1

N

∑
i=1

ξi(t)δis(t)Acis

)
−

N

∑
i=1

ξi(t)Pi

⎤
⎦ x(t)

Let condition (28) be satisfied. At this level, for each i, multiply the j = 1, . . . , N inequalities
(28) by ξ j(t + 1) and sum. Multiply the resulting i = 1, . . . , N inequalities by ξi(t) and sum.
Multiply again the resulting s = 1, . . . , η inequalities by δis(t) and sum. As ∑N

i=1 ξi(t) =

∑N
j=1 ξ j(t + 1) = ∑

η
s=1 δis(t) = 1, one gets:

[
∑N

i=1 ξi(t)Pi Γ ∑N
j=1 ξ j(t + 1)Pj

∗ ∑N
j=1 ξ j(t + 1)Pj

]
> 0, (34)

with, Γ =
[
∑

η
s=1 ∑N

i=1 ξi(t)δis(t)Acis

]T
. The use of Schur complement allows us to write con-

dition (34) under the equivalent form,

(
η

∑
s=1

N

∑
i=1

ξi(t)δis(t)Acis

)T
⎛
⎝ N

∑
j=1

ξ j(t + 1)Pj

⎞
⎠

(
η

∑
s=1

N

∑
i=1

ξi(t)δis(t)Acis

)
−

N

∑
i=1

ξi(t)Pi < 0, (35)

∀(i, j) ∈ ℐ × ℐ , ∀s ∈ [1, η]

Letting λ be the largest eigenvalue among all the above matrices, we obtain that

∆V(t, x(t)) ≤ λxT(t)x(t) < 0. (36)

which ensures the desired result. Noting that condition (28) is also satisfied for i = j, this
implies that each set ε(Pi, 1) is a contractively invariant set for the corresponding subsystem.

Further, by taking account of condition (29), one can guarantee that for every xo ∈ ε(Pi, 1) ⊂
ℒ(Hi), each subsystem is asymptotically stable at the origin. Besides, following Theorem
2.2, conditions (28)-(29) also allow for a state belonging, before the switch, to a set ε(Pi, 1) ⊂
ℒ(Hi), if a switch occurs at any time tk, that the switch will handle the state to the desired set
ε(Pj, 1) ⊂ ℒ(Hj). That means that the set Ω is a set of asymptotic stability of the switching
system. □
This stability result can be used for control synthesis as follows.

Theorem 2.5. If there exists N symmetric matrices X1, . . . , XN and 2N matrices Y1, . . . , YN and
Z1, . . . , ZN solutions of the following LMIs:

[
Xi (AiXi + BiDisYi + BiD−

is Zi)
T

∗ Xj

]
> 0, (37)

[
1 Zli
∗ Xi

]
> 0, (38)

∀(i, j) ∈ ℐ × ℐ , ∀s ∈ [1, η], ∀l ∈ [1, m]

then the switching system with saturations in closed-loop (3), with,

Fi = YiX−1
i , Hi = ZiX−1

i , Pi = X−1
i (39)

is asymptotically stable at the origin ∀x0 ∈ Ω and for any sequences of switching α(t).

Proof: The Inequalities (28) can be transformed equivalently by Schur complement to the
following:

Pj
[
Ai + Bi(DisFi + D−

is Hi)
]

P−1
i

[
Ai + Bi(DisFi + D−

is Hi)
]T Pj − Pj < 0 (40)

By pre and post-multiplying the latter by P−1
j , it follows:

[
Ai + Bi(DisFi + D−

is Hi)
]

P−1
i

[
Ai + Bi(DisFi + D−

is Hi)
]T − P−1

j < 0 (41)

Pose Xi = P−1
i , inequality (41) can then be rewritten as,

[
Ai + Bi(DisFi + D−

is Hi)
]

Xi
[
Ai + Bi(DisFi + D−

is Hi)
]T − Xj < 0,

that is
[
AiXi + Bi(DisFiXi + D−

is HiXi)
]

X−1
i

[
AiXi + Bi(DisFiXi + D−

is HiXi)
]T − Xj < 0.

The use of the Schur complement a second time leads to:
[

Xi (AiXi + BiDisFiXi + BiD−
is HiXi)

T

∗ Xj

]
> 0 (42)

By letting FiXi = Yi and HiXi = Zi, the LMI (37) follows readily. Using (Boyd et al., 1994), the
inclusion condition (29) can also be transformed to the equivalent LMI (38). □
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Proof: Assume that there exist N matrices H1, . . . , HN and N symmetric matrices P1, . . . , PN
such that condition (28) and (29) are satisfied. Using the expression in (10) and rewriting
System (3) as in (5) yields that:

sat(Fix(t)) =
η

∑
s=1

δis(t)[DisFi + D−
is Hi]x(t) ; (30)

δsi(t) ≥ 0,
η

∑
s=1

δsi(t) = 1 (31)

and, subsequently :

x(t + 1) =
η

∑
s=1

N

∑
i=1

ξi(t)δis(t)Acisx(t); (32)

Acis := Ai + Bi(DisFi + D−
is Hi), s ∈ [1, η]

The rate of change of the Lyapunov function candidate (13) along the trajectories of (32) is
given by:

∆V(t, x(t)) = xT(t + 1)(
N

∑
j=1

ξ j(t + 1)Pj)x(t + 1)− xT(t)(
N

∑
i=1

ξi(t)Pi)x(t) = xT(t) (33)

⎡
⎣
(

η

∑
s=1

N

∑
i=1

ξi(t)δis(t)Acis

)T
⎛
⎝ N

∑
j=1

ξ j(t + 1)Pj

⎞
⎠

(
η

∑
s=1

N

∑
i=1

ξi(t)δis(t)Acis

)
−

N

∑
i=1

ξi(t)Pi

⎤
⎦ x(t)

Let condition (28) be satisfied. At this level, for each i, multiply the j = 1, . . . , N inequalities
(28) by ξ j(t + 1) and sum. Multiply the resulting i = 1, . . . , N inequalities by ξi(t) and sum.
Multiply again the resulting s = 1, . . . , η inequalities by δis(t) and sum. As ∑N

i=1 ξi(t) =

∑N
j=1 ξ j(t + 1) = ∑

η
s=1 δis(t) = 1, one gets:

[
∑N

i=1 ξi(t)Pi Γ ∑N
j=1 ξ j(t + 1)Pj

∗ ∑N
j=1 ξ j(t + 1)Pj

]
> 0, (34)

with, Γ =
[
∑

η
s=1 ∑N

i=1 ξi(t)δis(t)Acis

]T
. The use of Schur complement allows us to write con-

dition (34) under the equivalent form,

(
η

∑
s=1

N

∑
i=1

ξi(t)δis(t)Acis

)T
⎛
⎝ N

∑
j=1

ξ j(t + 1)Pj

⎞
⎠

(
η

∑
s=1

N

∑
i=1

ξi(t)δis(t)Acis

)
−

N

∑
i=1

ξi(t)Pi < 0, (35)

∀(i, j) ∈ ℐ × ℐ , ∀s ∈ [1, η]

Letting λ be the largest eigenvalue among all the above matrices, we obtain that

∆V(t, x(t)) ≤ λxT(t)x(t) < 0. (36)

which ensures the desired result. Noting that condition (28) is also satisfied for i = j, this
implies that each set ε(Pi, 1) is a contractively invariant set for the corresponding subsystem.

Further, by taking account of condition (29), one can guarantee that for every xo ∈ ε(Pi, 1) ⊂
ℒ(Hi), each subsystem is asymptotically stable at the origin. Besides, following Theorem
2.2, conditions (28)-(29) also allow for a state belonging, before the switch, to a set ε(Pi, 1) ⊂
ℒ(Hi), if a switch occurs at any time tk, that the switch will handle the state to the desired set
ε(Pj, 1) ⊂ ℒ(Hj). That means that the set Ω is a set of asymptotic stability of the switching
system. □
This stability result can be used for control synthesis as follows.

Theorem 2.5. If there exists N symmetric matrices X1, . . . , XN and 2N matrices Y1, . . . , YN and
Z1, . . . , ZN solutions of the following LMIs:

[
Xi (AiXi + BiDisYi + BiD−

is Zi)
T

∗ Xj

]
> 0, (37)

[
1 Zli
∗ Xi

]
> 0, (38)

∀(i, j) ∈ ℐ × ℐ , ∀s ∈ [1, η], ∀l ∈ [1, m]

then the switching system with saturations in closed-loop (3), with,

Fi = YiX−1
i , Hi = ZiX−1

i , Pi = X−1
i (39)

is asymptotically stable at the origin ∀x0 ∈ Ω and for any sequences of switching α(t).

Proof: The Inequalities (28) can be transformed equivalently by Schur complement to the
following:

Pj
[
Ai + Bi(DisFi + D−

is Hi)
]

P−1
i

[
Ai + Bi(DisFi + D−

is Hi)
]T Pj − Pj < 0 (40)

By pre and post-multiplying the latter by P−1
j , it follows:

[
Ai + Bi(DisFi + D−

is Hi)
]

P−1
i

[
Ai + Bi(DisFi + D−

is Hi)
]T − P−1

j < 0 (41)

Pose Xi = P−1
i , inequality (41) can then be rewritten as,

[
Ai + Bi(DisFi + D−

is Hi)
]

Xi
[
Ai + Bi(DisFi + D−

is Hi)
]T − Xj < 0,

that is
[
AiXi + Bi(DisFiXi + D−

is HiXi)
]

X−1
i

[
AiXi + Bi(DisFiXi + D−

is HiXi)
]T − Xj < 0.

The use of the Schur complement a second time leads to:
[

Xi (AiXi + BiDisFiXi + BiD−
is HiXi)

T

∗ Xj

]
> 0 (42)

By letting FiXi = Yi and HiXi = Zi, the LMI (37) follows readily. Using (Boyd et al., 1994), the
inclusion condition (29) can also be transformed to the equivalent LMI (38). □
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To obtain larger ellipsoid domains ε(Pi, 1), we can apply the following optimization problem:

(Pb.2) :

⎧⎨
⎩

sup(Xi ,Yi ,Zi)
Trace(Xi)

s.t. (37), (38),
i = 1, . . . , N

When this optimization problem is feasible, the obtained ellipsoid volumes are maximum
with respect to the data of the system.

Remark 2.1. The results presented in this section can be extended easily to level sets ε(Pi, ρi) where
the scalars ρi, i = 1, . . . , N can be a priori fixed, by using the variables Xi = Pi/ρi in the LMIs (24)-
(25) and (37)-(38).

Commennt 2.1. The resolution of the LMIs (37) for s ∈ [1, η], may be very restrictive. One can relax
this resolution by accepting controllers working in a region of linear behavior where the saturations
do not occur. The obtained results in this work, where the switching system is with saturated control,
are a set of (2m × N2 + Nm) LMIs for computing stabilizing controllers working inside the saturated
regions ℒ(Hi) or only a set of (N2 + Nm) LMIs for computing stabilizing controllers working inside
regions of linear behavior ℒ(Fi). Note also that the LMIs of Theorem 2.3 can be obtained from LMIs of
Theorem 2.5 by letting Dis = I and D−

is = 0.

Example 2.1. Consider a numerical switching discrete-time system with saturation specified by the
two subsystems:

A1 =

[
−0.7 1
−0.5 −1.5

]
; B1 =

[
1
0

]
; A2 =

[
0.9 −1
1.7 −1.5

]
; B2 =

[
0
−1

]
.

We have to solve 5 LMIs with 4 variables to compute controllers working inside a region of linear
behavior. The use of the Matlab LMI Toolbox to check our conditions leads to the following results
without using the optimization problem (Pb.1).

P1 =

[
7.3328 18.7125
18.7125 55.9711

]
; F1 =

[
1.2244 0.7535

]
; Ac1 =

[
0.5244 1.7535
−0.5000 −1.5000

]
;

P2 =

[
4.8237 −5.1001
−5.1001 5.6715

]
; F2 =

[
1.7559 −1.5699

]
; Ac2 =

[
0.9000 −1.0000
−0.0559 0.0699

]
;

Figure 1 presents the two ellipsoid sets of invariance and contractivity ε(Pi, 1) together with the sets
of linear behavior ℒ(Fi) computed with LMIs (24)-(25).
For the same example, the use of the Matlab LMI Toolbox to check conditions (37)-(38) leads to the
following results by using the optimization problem (Pb.2) with 10 LMIs and 6 variables.

P1 =

[
7.4032 18.1841
18.1841 56.6345

]
; H1 =

[
1.2534 0.8569

]
; F1 =

[
1.2641 0.8526

]
;

Ac1 =

[
0.5641 1.8526
−0.5000 −1.5000

]
;

P2 =

[
4.5202 −4.3908
−4.3908 6.5909

]
; H2 =

[
1.7693 −1.5845

]
; F2 =

[
1.7697 −1.5836

]
;

Ac2 =

[
0.9000 −1.0000
−0.0697 0.0836

]
;
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Fig. 1. The ellipsoids sets of invariance and contractivity for the switching discrete-time linear
system computed with LMIs (24)-(25).

Note that the optimal values of the optimization problem (Pb.2) are given by Trace(P−1
1 ) = 0.7227

and Trace(P−1
2 ) = 1.0568. Figure 2 presents the two ellipsoid sets of invariance and contractivity
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Fig. 2. The ellipsoids sets of invariance and contractivity for the switching discrete-time linear
system computed with LMIs (37)-(38) and (Pb.2).

ε(Pi, 1) together with the set of saturations ℒ(Hi) computed with (Pb.2).

Comparing the results obtained by LMIs (37)-(38) and LMIs (24)-(25), one can note that the
matrices Hi are very closed up to matrices Fi obtained with LMIs (37)-(38), that is, ℒ(Hi) ∼=
ℒ(Fi). This means that in the case of this example, the saturations allowed by this technique
are not very important. Recall that inside the sets ℒ(Fi) no saturations occur. Furthermore, the
results obtained with LMIs (24)-(25) are less conservative. This is due to the fact that among
the number of LMIs to be solved in (37)-(38), one find the LMIs (24)-(25).

2.3.3 Output feedback control
Static output-feedback control plays a very important role in control applications: The
purpose is to design controllers such that the resulting closed-loop system is asymptotically
stable without using any reconstruction method of the unavailable states. In this section,
we begin by the synthesis of the saturating controllers since the non saturating ones can be
derived as a particular case. The synthesis of the stabilizing controller by output feedback
control for the class of switching system with actuator saturation is presented by applying
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To obtain larger ellipsoid domains ε(Pi, 1), we can apply the following optimization problem:

(Pb.2) :

⎧⎨
⎩

sup(Xi ,Yi ,Zi)
Trace(Xi)

s.t. (37), (38),
i = 1, . . . , N

When this optimization problem is feasible, the obtained ellipsoid volumes are maximum
with respect to the data of the system.

Remark 2.1. The results presented in this section can be extended easily to level sets ε(Pi, ρi) where
the scalars ρi, i = 1, . . . , N can be a priori fixed, by using the variables Xi = Pi/ρi in the LMIs (24)-
(25) and (37)-(38).

Commennt 2.1. The resolution of the LMIs (37) for s ∈ [1, η], may be very restrictive. One can relax
this resolution by accepting controllers working in a region of linear behavior where the saturations
do not occur. The obtained results in this work, where the switching system is with saturated control,
are a set of (2m × N2 + Nm) LMIs for computing stabilizing controllers working inside the saturated
regions ℒ(Hi) or only a set of (N2 + Nm) LMIs for computing stabilizing controllers working inside
regions of linear behavior ℒ(Fi). Note also that the LMIs of Theorem 2.3 can be obtained from LMIs of
Theorem 2.5 by letting Dis = I and D−

is = 0.

Example 2.1. Consider a numerical switching discrete-time system with saturation specified by the
two subsystems:

A1 =

[
−0.7 1
−0.5 −1.5

]
; B1 =

[
1
0

]
; A2 =

[
0.9 −1
1.7 −1.5

]
; B2 =

[
0
−1

]
.

We have to solve 5 LMIs with 4 variables to compute controllers working inside a region of linear
behavior. The use of the Matlab LMI Toolbox to check our conditions leads to the following results
without using the optimization problem (Pb.1).

P1 =

[
7.3328 18.7125

18.7125 55.9711

]
; F1 =

[
1.2244 0.7535

]
; Ac1 =

[
0.5244 1.7535
−0.5000 −1.5000

]
;

P2 =

[
4.8237 −5.1001
−5.1001 5.6715

]
; F2 =

[
1.7559 −1.5699

]
; Ac2 =

[
0.9000 −1.0000
−0.0559 0.0699

]
;

Figure 1 presents the two ellipsoid sets of invariance and contractivity ε(Pi, 1) together with the sets
of linear behavior ℒ(Fi) computed with LMIs (24)-(25).
For the same example, the use of the Matlab LMI Toolbox to check conditions (37)-(38) leads to the
following results by using the optimization problem (Pb.2) with 10 LMIs and 6 variables.

P1 =

[
7.4032 18.1841

18.1841 56.6345

]
; H1 =

[
1.2534 0.8569

]
; F1 =

[
1.2641 0.8526

]
;

Ac1 =

[
0.5641 1.8526
−0.5000 −1.5000

]
;

P2 =

[
4.5202 −4.3908
−4.3908 6.5909

]
; H2 =

[
1.7693 −1.5845

]
; F2 =

[
1.7697 −1.5836

]
;

Ac2 =

[
0.9000 −1.0000
−0.0697 0.0836

]
;
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Fig. 1. The ellipsoids sets of invariance and contractivity for the switching discrete-time linear
system computed with LMIs (24)-(25).

Note that the optimal values of the optimization problem (Pb.2) are given by Trace(P−1
1 ) = 0.7227

and Trace(P−1
2 ) = 1.0568. Figure 2 presents the two ellipsoid sets of invariance and contractivity
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Fig. 2. The ellipsoids sets of invariance and contractivity for the switching discrete-time linear
system computed with LMIs (37)-(38) and (Pb.2).

ε(Pi, 1) together with the set of saturations ℒ(Hi) computed with (Pb.2).

Comparing the results obtained by LMIs (37)-(38) and LMIs (24)-(25), one can note that the
matrices Hi are very closed up to matrices Fi obtained with LMIs (37)-(38), that is, ℒ(Hi) ∼=
ℒ(Fi). This means that in the case of this example, the saturations allowed by this technique
are not very important. Recall that inside the sets ℒ(Fi) no saturations occur. Furthermore, the
results obtained with LMIs (24)-(25) are less conservative. This is due to the fact that among
the number of LMIs to be solved in (37)-(38), one find the LMIs (24)-(25).

2.3.3 Output feedback control
Static output-feedback control plays a very important role in control applications: The
purpose is to design controllers such that the resulting closed-loop system is asymptotically
stable without using any reconstruction method of the unavailable states. In this section,
we begin by the synthesis of the saturating controllers since the non saturating ones can be
derived as a particular case. The synthesis of the stabilizing controller by output feedback
control for the class of switching system with actuator saturation is presented by applying
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the results of Theorem 2.4.

Theorem 2.6. If there exist symmetric matrices Xi, matrices Vi, Yi and Zi solutions of the following
LMIs:

[
Xi (AiXi + BiDisYiCi + BiD−

is Zi)
T

∗ Xj

]
> 0, (43)

[
1 Zil
∗ Xi

]
> 0, (44)

ViCi = CiXi (45)

∀(i, j) ∈ ℐ2, ∀s ∈ [1, η], ∀l ∈ [1, m]

then the closed-loop saturated switching system (3) with

Ki = YiV−1
i , Hi = ZiX−1

i , Pi = X−1
i (46)

is asymptotically stable ∀x0 ∈ Ω and for all switching sequences α(k).

Proof: The same development as (40)-(42) while replacing Fi by KiCi, can be followed to ob-
tain,

[
Xi (AiXi + BiDisKiCiXi + BiD−

is HiXi)
T

∗ Xj

]
> 0.

According to Equation (45), we have KiCiXi = KiViCi. By letting KiVi = Yi and HiXi = Zi,
the LMI (43) follows together with relations (46). Similarly, the inclusion condition (29) can
also be transformed to the equivalent LMI (44). Finally, the inequality (43) ensures that the
obtained solutions Xi are positive definite while equalities (45) guarantee that matrices Vi are
nonsingular. □
It is worth noting that the state feedback follows readily from Theorem 2.6 by letting Ci = Im.
In this case, Vi = Xi.
The LMI (43), relating matrices Ci to matrix Xi by means of Equation (45), can be relaxed by us-
ing the LMI (17), where the new variables Gi are related to matrices Ci instead of the matrix Xi.

Corollary 2.1. If there exist symmetric matrices Xi, matrices Gi, Vi, Yi and Zi solutions of the follow-
ing LMIs:

[
Gi + GT

i − Xi ΨT
is

∗ Xj

]
> 0, (47)

[
1, Zil
∗ Gi + GT

i − Xi

]
> 0, (48)

ViCi = CiGi (49)

∀(i, j) ∈ ℐ2, ∀s ∈ [1, η], ∀l ∈ [1, m]

where Ψis = (AiGi + BiDisYiCi + BiD−
is Zi), then the closed-loop saturated switching system (3) with

Ki = YiV−1
i , Hi = ZiG−1

i , Pi = X−1
i (50)

is asymptotically stable ∀x0 ∈ Ω and all switching sequences α(k).

Proof: The proof uses the equivalent LMI (17) and is similar to that of Theorem 2.6. However,
the inclusion condition ε(Pi, 1) ⊂ ℒ(Hi) ∀i ∈ ℐ holds if 1 − Hil Xi HT

il > 0, ∀l ∈ [1, m], which
is equivalent to,
1 − (HiGi)l(GT

i X−1
i Gi)

−1(HiGi)
T
l > 0. That is, by virtue of (50) 1 −

(Zil)(GT
i X−1

i Gi)
−1(Zil)

T > 0. Since, (Gi − Xi)
T X−1

i (Gi − Xi) ≥ 0, then GiX−1
i GT

i ≥
Gi + GT

i − Xi. It follows that, 1− Zil(Gi + GT
i − Xi)ZT

il > 0 sufficient to have ε(Pi, 1) ⊂ ℒ(Hi).
By Schur complement, the LMI (48) is obtained. □
To achieve a domain of attraction as large as possible, we can solve similar optimization
problem as for state feedback control.
Another way to deal with the problem by relaxing the more constraining relations (45) of
Theorem 2.6, especially in MIMO case, is presented by the following result which uses the
same idea as in (El Ghaoui et al., 1997) and (Chadli et al., 2002).

Theorem 2.7. If there exist symmetric matrices Xi and Si, matrices Yi and Zi solutions of the following
LMIs:

[
Xi (Ai + BiDisYiCi + BiD−

is Zi)
T

∗ Sj

]
> 0, (51)

[
1 Zil
∗ Xi

]
> 0, (52)

[
Xi, I

∗ Si

]
≥ 0 (53)

∀(i, j) ∈ ℐ2, ∀s ∈ [1, η], ∀l ∈ [1, m]

such that Trace(XiSi) = n, then the closed-loop saturated switching system (3) with

Ki = Yi, Hi = Zi, Pi = Xi (54)

is asymptotically stable ∀x0 ∈ Ω and all switching sequences α(k).

Proof: The inequality (28) can be equivalently transformed via the Schur Complement to the
following:

[
Ai + Bi(DisKiCi + D−

is Hi)
]T Pj

[
Ai + Bi(DisKiCi + D−

is Hi)
]
− Pi < 0 (55)

The use of the Schur complement a second time leads to
[

Pi (Ai + BiDisKiCi + BiD−
is Hi)

T

∗ P−1
j

]
> 0

(56)

By letting Xi = Pi, Sj = P−1
j , Yi = Ki and Zi = Hi, the LMI (51) follows together with relations

(54). The inclusion condition (29) can also be transformed to the equivalent LMI (52) (Boyd
et al., 1994): Hil P

−1
i HT

il ≤ 1 can be rewritten by Schur complement, while using Zi = Hi as
(52). Note that the LMI (51) ensures that the obtained solutions Xi and Si are positive definite.
Finally, the LMI (53) is equivalent to SiXi ≥ I. □
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the results of Theorem 2.4.

Theorem 2.6. If there exist symmetric matrices Xi, matrices Vi, Yi and Zi solutions of the following
LMIs:

[
Xi (AiXi + BiDisYiCi + BiD−

is Zi)
T

∗ Xj

]
> 0, (43)

[
1 Zil
∗ Xi

]
> 0, (44)

ViCi = CiXi (45)

∀(i, j) ∈ ℐ2, ∀s ∈ [1, η], ∀l ∈ [1, m]

then the closed-loop saturated switching system (3) with

Ki = YiV−1
i , Hi = ZiX−1

i , Pi = X−1
i (46)

is asymptotically stable ∀x0 ∈ Ω and for all switching sequences α(k).

Proof: The same development as (40)-(42) while replacing Fi by KiCi, can be followed to ob-
tain,

[
Xi (AiXi + BiDisKiCiXi + BiD−

is HiXi)
T

∗ Xj

]
> 0.

According to Equation (45), we have KiCiXi = KiViCi. By letting KiVi = Yi and HiXi = Zi,
the LMI (43) follows together with relations (46). Similarly, the inclusion condition (29) can
also be transformed to the equivalent LMI (44). Finally, the inequality (43) ensures that the
obtained solutions Xi are positive definite while equalities (45) guarantee that matrices Vi are
nonsingular. □
It is worth noting that the state feedback follows readily from Theorem 2.6 by letting Ci = Im.
In this case, Vi = Xi.
The LMI (43), relating matrices Ci to matrix Xi by means of Equation (45), can be relaxed by us-
ing the LMI (17), where the new variables Gi are related to matrices Ci instead of the matrix Xi.

Corollary 2.1. If there exist symmetric matrices Xi, matrices Gi, Vi, Yi and Zi solutions of the follow-
ing LMIs:

[
Gi + GT

i − Xi ΨT
is

∗ Xj

]
> 0, (47)

[
1, Zil
∗ Gi + GT

i − Xi

]
> 0, (48)

ViCi = CiGi (49)

∀(i, j) ∈ ℐ2, ∀s ∈ [1, η], ∀l ∈ [1, m]

where Ψis = (AiGi + BiDisYiCi + BiD−
is Zi), then the closed-loop saturated switching system (3) with

Ki = YiV−1
i , Hi = ZiG−1

i , Pi = X−1
i (50)

is asymptotically stable ∀x0 ∈ Ω and all switching sequences α(k).

Proof: The proof uses the equivalent LMI (17) and is similar to that of Theorem 2.6. However,
the inclusion condition ε(Pi, 1) ⊂ ℒ(Hi) ∀i ∈ ℐ holds if 1 − Hil Xi HT

il > 0, ∀l ∈ [1, m], which
is equivalent to,
1 − (HiGi)l(GT

i X−1
i Gi)

−1(HiGi)
T
l > 0. That is, by virtue of (50) 1 −

(Zil)(GT
i X−1

i Gi)
−1(Zil)

T > 0. Since, (Gi − Xi)
T X−1

i (Gi − Xi) ≥ 0, then GiX−1
i GT

i ≥
Gi + GT

i − Xi. It follows that, 1− Zil(Gi + GT
i − Xi)ZT

il > 0 sufficient to have ε(Pi, 1) ⊂ ℒ(Hi).
By Schur complement, the LMI (48) is obtained. □
To achieve a domain of attraction as large as possible, we can solve similar optimization
problem as for state feedback control.
Another way to deal with the problem by relaxing the more constraining relations (45) of
Theorem 2.6, especially in MIMO case, is presented by the following result which uses the
same idea as in (El Ghaoui et al., 1997) and (Chadli et al., 2002).

Theorem 2.7. If there exist symmetric matrices Xi and Si, matrices Yi and Zi solutions of the following
LMIs:

[
Xi (Ai + BiDisYiCi + BiD−

is Zi)
T

∗ Sj

]
> 0, (51)

[
1 Zil
∗ Xi

]
> 0, (52)

[
Xi, I

∗ Si

]
≥ 0 (53)

∀(i, j) ∈ ℐ2, ∀s ∈ [1, η], ∀l ∈ [1, m]

such that Trace(XiSi) = n, then the closed-loop saturated switching system (3) with

Ki = Yi, Hi = Zi, Pi = Xi (54)

is asymptotically stable ∀x0 ∈ Ω and all switching sequences α(k).

Proof: The inequality (28) can be equivalently transformed via the Schur Complement to the
following:

[
Ai + Bi(DisKiCi + D−

is Hi)
]T Pj

[
Ai + Bi(DisKiCi + D−

is Hi)
]
− Pi < 0 (55)

The use of the Schur complement a second time leads to
[

Pi (Ai + BiDisKiCi + BiD−
is Hi)

T

∗ P−1
j

]
> 0

(56)

By letting Xi = Pi, Sj = P−1
j , Yi = Ki and Zi = Hi, the LMI (51) follows together with relations

(54). The inclusion condition (29) can also be transformed to the equivalent LMI (52) (Boyd
et al., 1994): Hil P

−1
i HT

il ≤ 1 can be rewritten by Schur complement, while using Zi = Hi as
(52). Note that the LMI (51) ensures that the obtained solutions Xi and Si are positive definite.
Finally, the LMI (53) is equivalent to SiXi ≥ I. □
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This result presents the advantage of computing directly the matrices Ki and Hi. Neverthe-
less, an optimization problem must be solved to achieve XiSi ≃ I by minimizing iteratively
the trace of matrix XiSi using an algorithm presented in (El Ghaoui et al., 1997). This heuris-
tic is based on a linear approximation of Tr(XiSi) by Tr(X0Si + S0Xi) where X0 and S0 are
particular solutions of the LMI constraints (51), (52) and (53).

(Pb.3) :

⎧⎨
⎩

min(Sj ,Xi ,Yi ,Zi) Trace(XiSi)

s.t. (51), (52), (53)
i, j = 1, . . . , N

An output feedback non saturating controller can be obtained, as noted in Comment 2.1, as
a particular case of the saturating controller results by letting Dis = I and D−

is = 0. It is also
obvious that the inclusion condition becomes ε(Pi, 1) ⊂ ℒ(KiCi). The following results are
then directly obtained.

Corollary 2.2. If there exist symmetric matrices Xi, matrices Vi and Yi solutions of the following
LMIs:

[
Xi (AiXi + BiYiCi)

T

∗ Xj

]
> 0, (57)

[
1 (YiCi)l
∗ Xi

]
> 0, (58)

ViCi = CiXi (59)

∀(i, j) ∈ ℐ2, ∀l ∈ [1, m]

then the closed-loop saturated switching system (3) with

Ki = YiV−1
i , Pi = X−1

i (60)

is asymptotically stable ∀x0 ∈ Ω and for all switching sequences α(k).

Proof: This proof can be obtained easily by letting Dis = I and D−
is = 0 in Theorem 2.6.

However, the inclusion condition ε(Pi, 1) ⊂ ℒ(KiCi) leads to (KiCi)l P
−1
i (KiCi)

T
l ≤ 1 which is

equivalent to,
(KiCiP−1

i )l Pi(KiCiP−1
i )T

l ≤ 1,

by using (59), (KiViCi)l X
−1
i (KiViCi)

T
l ≤ 1, can be rewritten by Schur complement, while using

Yi = KiVi as (58). □
In a similar way, the result of Theorem 2.7 can be applied for designing non saturating controls
by letting Dis = I and D−

is = 0.

Example 2.2. In order to illustrate these results, consider a SISO saturated switching discrete-time
system with two modes given by the following matrices:

A1 =

[
1 1
0 1

]
; B1 =

[
10
5

]
; C1 =

[
1 1

]

A2 =

[
0 −1

0.0001 1

]
; B2 =

[
0.5
−2

]
; C2 =

[
2 3

]

For this example with n = 2, m = p = 1 and N = 2, we have to solve 13 LMIs with 9 variables by
using the LMIs of Corollary 2.1. Let the scalar ρ = 1. The use of the Matlab LMI Toolbox yields the
following results:

P1 =

[
0.0016 0.0006
0.0006 0.0025

]
; H1 =

[
−0.0196 −0.0479

]
;

K1 = −0.0743; Ac1 =

[
0.2574 0.2574
−0.3713 0.6287

]
;

P2 =

[
0.0010 0.0004
0.0004 0.0027

]
; H2 =

[
0.000007 0.0483

]
;

K2 = 0.0347; Ac2 =

[
0.0615 −0.9077
−0.2460 0.6309

]

The main conditions (12) are also satisfied:

AcT
1 P2 Ac1 − P1 = 10−3

[
−0.0012 −0.0011
−0.0011 −0.0013

]
;

AcT
2 P1 Ac2 − P2 = 10−3

[
−0.0008 −0.0007
−0.0007 −0.0011

]

Figure 3 shows the level set as the union of two ellipsoid sets of invariance and contractivity for
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Fig. 3. The level set as the union of two ellipsoid sets of invariance and contractivity for the
switching discrete-time linear system obtained by Corollary 2.1.

the switching discrete-time linear system obtained by Corollary 2.1. Each ellipsoid set is contained
inside the set of admissible saturations ℒ(Hi). Inside this set, the asymptotic stability of the saturated
switching system is guaranteed for any arbitrary switch from any linear subsystem to another. This
SISO example is studied only in order to illustrate the results of this work by plotting the level set in
the plane. The use of Theorem 2.7 leads to the following results for ρ = 1 :

P1 =

[
1.0961 0.0848
0.0848 1.0290

]
; P2 =

[
1.5366 0.1255
0.1255 1.4821

]
;

S1 =

[
0.6553 −0.0555
−0.0555 0.6794

]
; S2 =

[
0.9182 −0.0756
−0.0756 0.9781

]
;
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This result presents the advantage of computing directly the matrices Ki and Hi. Neverthe-
less, an optimization problem must be solved to achieve XiSi ≃ I by minimizing iteratively
the trace of matrix XiSi using an algorithm presented in (El Ghaoui et al., 1997). This heuris-
tic is based on a linear approximation of Tr(XiSi) by Tr(X0Si + S0Xi) where X0 and S0 are
particular solutions of the LMI constraints (51), (52) and (53).

(Pb.3) :

⎧⎨
⎩

min(Sj ,Xi ,Yi ,Zi) Trace(XiSi)

s.t. (51), (52), (53)
i, j = 1, . . . , N

An output feedback non saturating controller can be obtained, as noted in Comment 2.1, as
a particular case of the saturating controller results by letting Dis = I and D−

is = 0. It is also
obvious that the inclusion condition becomes ε(Pi, 1) ⊂ ℒ(KiCi). The following results are
then directly obtained.

Corollary 2.2. If there exist symmetric matrices Xi, matrices Vi and Yi solutions of the following
LMIs:

[
Xi (AiXi + BiYiCi)

T

∗ Xj

]
> 0, (57)

[
1 (YiCi)l
∗ Xi

]
> 0, (58)

ViCi = CiXi (59)

∀(i, j) ∈ ℐ2, ∀l ∈ [1, m]

then the closed-loop saturated switching system (3) with

Ki = YiV−1
i , Pi = X−1

i (60)

is asymptotically stable ∀x0 ∈ Ω and for all switching sequences α(k).

Proof: This proof can be obtained easily by letting Dis = I and D−
is = 0 in Theorem 2.6.

However, the inclusion condition ε(Pi, 1) ⊂ ℒ(KiCi) leads to (KiCi)l P
−1
i (KiCi)

T
l ≤ 1 which is

equivalent to,
(KiCiP−1

i )l Pi(KiCiP−1
i )T

l ≤ 1,

by using (59), (KiViCi)l X
−1
i (KiViCi)

T
l ≤ 1, can be rewritten by Schur complement, while using

Yi = KiVi as (58). □
In a similar way, the result of Theorem 2.7 can be applied for designing non saturating controls
by letting Dis = I and D−

is = 0.

Example 2.2. In order to illustrate these results, consider a SISO saturated switching discrete-time
system with two modes given by the following matrices:

A1 =

[
1 1
0 1

]
; B1 =

[
10
5

]
; C1 =

[
1 1

]

A2 =

[
0 −1

0.0001 1

]
; B2 =

[
0.5
−2

]
; C2 =

[
2 3

]

For this example with n = 2, m = p = 1 and N = 2, we have to solve 13 LMIs with 9 variables by
using the LMIs of Corollary 2.1. Let the scalar ρ = 1. The use of the Matlab LMI Toolbox yields the
following results:

P1 =

[
0.0016 0.0006
0.0006 0.0025

]
; H1 =

[
−0.0196 −0.0479

]
;

K1 = −0.0743; Ac1 =

[
0.2574 0.2574
−0.3713 0.6287

]
;

P2 =

[
0.0010 0.0004
0.0004 0.0027

]
; H2 =

[
0.000007 0.0483

]
;

K2 = 0.0347; Ac2 =

[
0.0615 −0.9077
−0.2460 0.6309

]

The main conditions (12) are also satisfied:

AcT
1 P2 Ac1 − P1 = 10−3

[
−0.0012 −0.0011
−0.0011 −0.0013

]
;

AcT
2 P1 Ac2 − P2 = 10−3

[
−0.0008 −0.0007
−0.0007 −0.0011

]

Figure 3 shows the level set as the union of two ellipsoid sets of invariance and contractivity for
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Fig. 3. The level set as the union of two ellipsoid sets of invariance and contractivity for the
switching discrete-time linear system obtained by Corollary 2.1.

the switching discrete-time linear system obtained by Corollary 2.1. Each ellipsoid set is contained
inside the set of admissible saturations ℒ(Hi). Inside this set, the asymptotic stability of the saturated
switching system is guaranteed for any arbitrary switch from any linear subsystem to another. This
SISO example is studied only in order to illustrate the results of this work by plotting the level set in
the plane. The use of Theorem 2.7 leads to the following results for ρ = 1 :

P1 =

[
1.0961 0.0848
0.0848 1.0290

]
; P2 =

[
1.5366 0.1255
0.1255 1.4821

]
;

S1 =

[
0.6553 −0.0555
−0.0555 0.6794

]
; S2 =

[
0.9182 −0.0756
−0.0756 0.9781

]
;
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H1 =
[
−0.0786 −0.1208

]
; K1 == −0.1007; H2 =

[
0.00004 0.5473

]
; K2 = 0.1812

The level set obtained with this approach is plotted in Figure 4 together with few trajectories.
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Fig. 4. The level set as the union of two ellipsoid sets of invariance and contractivity for
the switching discrete-time linear system obtained by Theorem 2.7 and the corresponding
switching sequences.

One can notice that the obtained level sets with Corollary2.1 are the most larger. One can
conclude, via this example, that the result of Corollary 2.1 is the less conservative among all
the other results due to the introduced slack variables Gi. Combining the comparisons made
for state feedback control and output feedback control, one can expect that the introduction of
slack variables in the Corollary 2.2 can lead to the more less conservative results.
In this section, two main different sufficient conditions of asymptotic stability are obtained
for switching discrete-time linear systems subject to actuator saturations for each case: state
feedback and output feedback control. The first allows the synthesis of stabilizing controllers
inside a large region of linear behavior while the second applies the idea of Lemma 2.1 which
rewrites the saturation function under a combination of 2m elements to obtain stabilizing con-
trollers tolerating saturations to take effect.

3. Stabilization of saturated switching systems with polytopic uncertainties

The objective of this section is to extend the results of (Benzaouia et al., 2006) to uncertain
switching system subject to actuator saturations. The uncertainty type considered in this
work is the polytopic one. This type of uncertainty was also studied, without saturation,
in (Hetel et al., 2006). Thus, in this work, two directions are explored: the first concerns the
synthesis of non saturating controllers, while the second direction deals with controllers

tolerating saturations to take effect under polytopic uncertainties. The main results of this
section are published in (Benzaouia et al., 2009b).

3.1 Problem presentation
Let us consider the uncertain saturated switching discrete-time linear system described by:

{
xt+1 = Aα(qα(t))xt + Bα(qα(t))sat(ut)

yt = Cα(qα(t))xt
(61)

where xt ∈ Rn, ut ∈ Rm, yt ∈ Rp are the state, the input and the output respectively, sat(.) is
the standard saturation (assumed here to be normalized, i.e., ∣sat(ut)∣ = min(1, ∣ut∣)), function
α(t) : N �−→ ℐ is a switching rule taking its values α(t) = i in the finite set ℐ = {1, ..., N} and
qα(t) ∈ Γα ⊂ Rdα are the bounded uncertainties that affect the system parameters in such a
way that

Aα(qα(t)) = Aα +
dα

∑
h=1

Aαhqαh(t) (62)

Bα(qα(t)) = Bα +
dα

∑
h=1

Bαhqαh(t) (63)

Cα(qα(t)) = Cα +
dα

∑
h=1

Cαhqαh(t) (64)

where matrices Aα, Bα, Cα represent the nominal matrices and qαh(t) the hth component of
vector qα(t) :

qα(t) = [qα1(t) qα2(t) ... qαh(t) ... qαdα
(t)]T .

The following additional assumption is required:

• Γα are compact convex sets.

Let the control be obtained by an output feedback control law:

ut = Kαyt = Fαxt,

Fα = KαCα. (65)

Thus, the closed-loop system is given by:

xt+1 = Aα(qα(t))xt + Bα(qα(t))sat(KαCα(qα(t))xt). (66)

Defining the indicator function:

ξ(t) := [ξ1(t), ..., ξN(t)]T , (67)

where ξi(t) = 1 if the switching system is in mode i and 0 otherwise, yields the following
representation for the closed-loop system:

xt+1 =
N

∑
i=1

ξi(t)[Ai(qi(t))xt + Bi(qi(t))sat(KiCi(qi(t))xt]. (68)
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the switching discrete-time linear system obtained by Theorem 2.7 and the corresponding
switching sequences.

One can notice that the obtained level sets with Corollary2.1 are the most larger. One can
conclude, via this example, that the result of Corollary 2.1 is the less conservative among all
the other results due to the introduced slack variables Gi. Combining the comparisons made
for state feedback control and output feedback control, one can expect that the introduction of
slack variables in the Corollary 2.2 can lead to the more less conservative results.
In this section, two main different sufficient conditions of asymptotic stability are obtained
for switching discrete-time linear systems subject to actuator saturations for each case: state
feedback and output feedback control. The first allows the synthesis of stabilizing controllers
inside a large region of linear behavior while the second applies the idea of Lemma 2.1 which
rewrites the saturation function under a combination of 2m elements to obtain stabilizing con-
trollers tolerating saturations to take effect.

3. Stabilization of saturated switching systems with polytopic uncertainties

The objective of this section is to extend the results of (Benzaouia et al., 2006) to uncertain
switching system subject to actuator saturations. The uncertainty type considered in this
work is the polytopic one. This type of uncertainty was also studied, without saturation,
in (Hetel et al., 2006). Thus, in this work, two directions are explored: the first concerns the
synthesis of non saturating controllers, while the second direction deals with controllers

tolerating saturations to take effect under polytopic uncertainties. The main results of this
section are published in (Benzaouia et al., 2009b).

3.1 Problem presentation
Let us consider the uncertain saturated switching discrete-time linear system described by:

{
xt+1 = Aα(qα(t))xt + Bα(qα(t))sat(ut)

yt = Cα(qα(t))xt
(61)

where xt ∈ Rn, ut ∈ Rm, yt ∈ Rp are the state, the input and the output respectively, sat(.) is
the standard saturation (assumed here to be normalized, i.e., ∣sat(ut)∣ = min(1, ∣ut∣)), function
α(t) : N �−→ ℐ is a switching rule taking its values α(t) = i in the finite set ℐ = {1, ..., N} and
qα(t) ∈ Γα ⊂ Rdα are the bounded uncertainties that affect the system parameters in such a
way that

Aα(qα(t)) = Aα +
dα

∑
h=1

Aαhqαh(t) (62)

Bα(qα(t)) = Bα +
dα

∑
h=1

Bαhqαh(t) (63)

Cα(qα(t)) = Cα +
dα

∑
h=1

Cαhqαh(t) (64)

where matrices Aα, Bα, Cα represent the nominal matrices and qαh(t) the hth component of
vector qα(t) :

qα(t) = [qα1(t) qα2(t) ... qαh(t) ... qαdα
(t)]T .

The following additional assumption is required:

• Γα are compact convex sets.

Let the control be obtained by an output feedback control law:

ut = Kαyt = Fαxt,

Fα = KαCα. (65)

Thus, the closed-loop system is given by:

xt+1 = Aα(qα(t))xt + Bα(qα(t))sat(KαCα(qα(t))xt). (66)

Defining the indicator function:

ξ(t) := [ξ1(t), ..., ξN(t)]T , (67)

where ξi(t) = 1 if the switching system is in mode i and 0 otherwise, yields the following
representation for the closed-loop system:

xt+1 =
N

∑
i=1

ξi(t)[Ai(qi(t))xt + Bi(qi(t))sat(KiCi(qi(t))xt]. (68)
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Let each convex set Γi has µi vertices νiκ , κ = 1, . . . , µi so that for every qi ∈ Γi, one can
write qi = ∑

µi
κ=1 βiκνiκ with ∑

µi
κ=1 βiκ = 1, 0 ≤ βiκ ≤ 1. The consequence of this, is that

each matrix Ai(qi(t)), Bi(qi(t)) and Ci(qi(t)) can be expressed as a convex combination of the
corresponding vertices of the compact set Γi as follows:

M(qi) : = Mi +
µi

∑
κ=1

βiκ M(νiκ) =
µi

∑
κ=1

βiκ Miκ ,

M(νiκ) =
di

∑
h=1

Mihνiκh, Miκ = Mi + M(νiκ),
µi

∑
κ=1

βiκ = 1, 0 ≤ βiκ ≤ 1.

where Mi represents the nominal matrix. Matrix M can be taken differently as A, B or C. Note
that the system without uncertainties can be obtained as a particular case of this representa-
tion by letting the vertices νiκ = 0, ∀i, ∀κ. Besides, equations (69) are directly related to the
dimension di of the convex compact set Γi. The saturated uncertain switching system given
by (68) can be rewritten as:

xt+1 =
N

∑
i=1

µi

∑
κ=1

ξi(t)βiκ(t)[Aiκ xt + Biκsat(KiCiκ xt)] (69)

The nominal matrices will be represented by Ai, Bi and Ci. The nominal system in closed-loop
is then given by:

xt+1 =
N

∑
i=1

ξi(t)[Aixt + Bisat(KiCixt)] (70)

3.2 Analysis and synthesis of stabilizability
This section presents sufficient conditions of asymptotic stability of the saturated uncertain
switching system given by (69). The synthesis of the controller follows two different ap-
proaches, the first one deals firstly with the nominal system and then uses a test to check
the asymptotic stability in presence of uncertainties while the second considers the global
representation of the uncertain system (69).

Theorem 3.1. If there exist symmetric positive definite matrices P1, . . . , PN ∈ Rn×n and matrices
H1, . . . , HN ∈ Rm×n such that

[
Pi [Aiκ + Biκ(DisKiCiκ + D−

is Hi)]
T Pj

∗ Pj

]
> 0, (71)

∀κ = 1, . . . , µi, ∀(i, j) ∈ ℐ2, ∀s ∈ [1, η], (72)

and
ε(Pi, 1) ⊂ ℒ(Hi), (73)

then the closed-loop uncertain saturated switching system (69) is asymptotically stable ∀ x0 ∈ Ω :=∪N
i=1 ε(Pi, 1) and for all switching sequences α(t).

Proof: By using Lemma (2.1), for all Hi ∈ Rm×n with ∣Hijxt∣ < 1, j ∈ [1, m], where Hij
denotes the jth row of matrix Hi, there exist δiκ1 ≥ 0 ,..., δiκη ≥ 0 such that sat(KiCiκ xt) =

∑
η
s=1 δisκ(t)[DisKiCiκ + D−

is Hi]xt, δiκs(t) ≥ 0, ∑
η
s=1 δiκs(t) = 1. Then the closed-loop system

(69) can be rewritten as

xt+1 =
η

∑
s=1

N

∑
i=1

µi

∑
κ=1

ξi(t)βiκ(t)δiκs(t)Aciκsxt (74)

Aciκs := Aiκ + Biκ(DisKiCiκ + D−
is Hi).

Consider the Lyapunov function candidate V(x) = xT
t (∑

N
i=1 ξi(t)Pi)xt. Computing its rate of

increase along the trajectories of system (69) yields.

∆V(xt) = xT
t+1(

N

∑
j=1

ξ j(t + 1)Pj)xt+1 − xT
t (

N

∑
i=1

ξi(t)Pi)xt

= xT
t

⎧⎨
⎩ΣT(

N

∑
j=1

ξ j(t + 1)Pj)Σ −
N

∑
i=1

ξi(t)Pi

⎫⎬
⎭ xt.

where,

Σ =
η

∑
s=1

N

∑
i=1

µi

∑
κ=1

ξi(t)βiκ(t)δsκi(t)Aciκs

Let condition (71) be satisfied. For each i and j multiply successively by ξi(t), ξ j(t + 1), βiκ(t)
and δiκs(t) and sum. As ∑N

i=1 ξi(t) = ∑N
j=1 ξ j(t + 1) = ∑

η
s=1 δiκs(t) = ∑

µi
κ=1 βiκ(t) = 1, one

gets: [
∑N

i=1 ξi(t)Pi Π
∗ ∑N

j=1 ξ j(t + 1)Pj

]
> 0, (75)

where

Π = ΣT(
N

∑
j=1

ξ j(t + 1)Pj).

Inequality (75) is equivalent, by Schur complement, to

ΣT(
N

∑
j=1

ξ j(t + 1)Pj)Σ −
N

∑
i=1

ξi(t)Pi < 0

Letting λ be the largest eigenvalue among all the above matrices, we obtain that

∆V(xt) ≤ λxT
t xt < 0, (76)

which ensures the desired result. Besides, following Theorem 2.4, (71)-(73) also allow for a
state belonging to a set ε(Pi, 1) ⊂ ℒ(Hi), before the switch, if a switch occurs at time tk, the
switch will drive the state to the desired set ε(Pj, 1) ⊂ ℒ(Hj). That means that the set Ω is a
set of asymptotic stability of the uncertain saturated switching system. □

Remark 3.1. It is worth to note that the result of Theorem 2.4 can be obtained as a particular case of
Theorem 3.1.
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state belonging to a set ε(Pi, 1) ⊂ ℒ(Hi), before the switch, if a switch occurs at time tk, the
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This stability result is now used for control synthesis in two ways: the first consists in com-
puting the controllers only with the nominal system and to test their robustness in a second
step; while the second consists in computing in a single step the robust controllers. At this
end, the result of Theorem 2.6 can be used to compute matrices Ki, Hi and Pi for the nominal
switching system (70). At this step, the stabilizing controllers Ki and Hi of the nominal system
are assumed to be known. Then, the following test has to be performed.

Corollary 3.1. If there exist symmetric positive definite matrices Xi such that
[

Xi (Aiκ Xi + Biκ DisKiCiκ Xi + Biκ D−
is HiXi)

T

∗ Xj

]
> 0, (77)

[
1 (HiXi)l
∗ Xi

]
> 0, (78)

∀(i, j) ∈ ℐ2, ∀s ∈ [1, η], ∀l ∈ [1, m], ∀κ ∈ [1, µi],
with Pi = X−1

i , then the closed loop uncertain switching system (69) is asymptotically stable ∀ x0 ∈∪N
i=1 ε(Pi, 1) and for all switching sequences α(t).

Proof: The proof is similar to that given for Theorem 2.6. □
The second way to deal with robust controller design is to run a global set of LMIs leading,
if it is feasible, to the robust controllers directly. However, one can note that this method is
computationally more intensive.

Theorem 3.2. If there exist symmetric positive definite matrices Xi, matrices, Yi, Vi and Zi such that
[

Xi (Aiκ Xi + Biκ DisYiCiκ + Biκ D−
is Zi)

T

∗ Xj

]
> 0, (79)

[
1 Zil
∗ Xi

]
> 0, (80)

ViCiκ = Ciκ Xi, (81)

∀(i, j) ∈ ℐ2, ∀s ∈ [1, η], ∀l ∈ [1, m], ∀κ ∈ [1, µi]
with

Hi = ZiX−1
i , Ki = YiV−1

i , Pi = X−1
i , (82)

then, the closed-loop uncertain saturated switching system (69) is asymptotically stable ∀ x0 ∈ Ω, and
for all switching sequences α(t).

Proof: The proof is also similar to that given for Theorem 2.6. □
In order to relax the previous LMIs, one can introduce some slack variables as in (Daafouz et
al., 2002) and (Benzaouia et al., 2006), as it is now shown:

Theorem 3.3. If there exist symmetric positive definite matrices Xi, matrices, Yi, Vi, Gi and Zi such
that

[
Gi + GT

i − Xi Ψ
∗ Xj

]
> 0, (83)

with Ψ = (AiκGi + Biκ DisYiCiκ + Biκ D−
is Zi)

T,
[

1 Zil
∗ Gi + GT

i − Xi

]
> 0, (84)

ViCiκ = CiκGi, (85)

∀κ = 1, . . . , µi, ∀(i, j) ∈ ℐ2, ∀s ∈ [1, η], ∀l ∈ [1, m], with

Hi = ZiG−1
i , Ki = YiV−1

i , Pi = X−1
i ; (86)

then, the closed-loop uncertain saturated switching system (69) is asymptotically stable ∀ x0 ∈ Ω and
for all switching sequences α(t).

Proof: The proof is similar to that given for Corollary 2.1 □
These results can be illustrated with the following example.

Example 3.1. Consider a SISO saturated switching discrete system with two modes given by the
following matrices:

A1(q1(t)) =

[
1 1
0 1 + q11

]
; B1(q1(t)) =

[
10
5

]
;

C1(q1(t)) =
[

1 + q12 1
]

;

A2(q2(t)) =

[
0 + q21 −1
0.0001 1

]
; B2(q2(t)) =

[
0.5
−2 + q22

]
;

C2(q2(t)) =
[

2 3
]

.

The vertices of the domain of uncertainties that affect the first mode are:

ν11 = (−0.1,−0.2), ν12 = (−0.1, 0.2)

ν13 = (0.1,−0.2), ν14 = (0.1, 0.2).

The vertices of the domain of uncertainties that affect the second mode are:

ν21 = (−0.2, 0.5), ν22 = (−0.2, −0.1)

ν23 = (0.3, 0.5), ν24 = (0.3,−0.1).

Using Theorem 2.6, a stabilizing controller for the nominal system is

K1 = −0.1000, K2 = 0.1622.

To test the robustness, we can use the Corollary 3.1 which leads to the following results:

P1 =

[
0.0208 −0.0133
−0.0133 0.0257

]
; P2 =

[
0.0320 0.0023
0.0023 0.0474

]

On the other hand, the use of Theorem 3.2 leads to the following results:

K1 = −0.0902, K2 = 0.1858.
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This stability result is now used for control synthesis in two ways: the first consists in com-
puting the controllers only with the nominal system and to test their robustness in a second
step; while the second consists in computing in a single step the robust controllers. At this
end, the result of Theorem 2.6 can be used to compute matrices Ki, Hi and Pi for the nominal
switching system (70). At this step, the stabilizing controllers Ki and Hi of the nominal system
are assumed to be known. Then, the following test has to be performed.

Corollary 3.1. If there exist symmetric positive definite matrices Xi such that
[

Xi (Aiκ Xi + Biκ DisKiCiκ Xi + Biκ D−
is HiXi)

T

∗ Xj

]
> 0, (77)

[
1 (HiXi)l
∗ Xi

]
> 0, (78)

∀(i, j) ∈ ℐ2, ∀s ∈ [1, η], ∀l ∈ [1, m], ∀κ ∈ [1, µi],
with Pi = X−1

i , then the closed loop uncertain switching system (69) is asymptotically stable ∀ x0 ∈∪N
i=1 ε(Pi, 1) and for all switching sequences α(t).

Proof: The proof is similar to that given for Theorem 2.6. □
The second way to deal with robust controller design is to run a global set of LMIs leading,
if it is feasible, to the robust controllers directly. However, one can note that this method is
computationally more intensive.

Theorem 3.2. If there exist symmetric positive definite matrices Xi, matrices, Yi, Vi and Zi such that
[

Xi (Aiκ Xi + Biκ DisYiCiκ + Biκ D−
is Zi)

T

∗ Xj

]
> 0, (79)

[
1 Zil
∗ Xi

]
> 0, (80)

ViCiκ = Ciκ Xi, (81)

∀(i, j) ∈ ℐ2, ∀s ∈ [1, η], ∀l ∈ [1, m], ∀κ ∈ [1, µi]
with

Hi = ZiX−1
i , Ki = YiV−1

i , Pi = X−1
i , (82)

then, the closed-loop uncertain saturated switching system (69) is asymptotically stable ∀ x0 ∈ Ω, and
for all switching sequences α(t).

Proof: The proof is also similar to that given for Theorem 2.6. □
In order to relax the previous LMIs, one can introduce some slack variables as in (Daafouz et
al., 2002) and (Benzaouia et al., 2006), as it is now shown:

Theorem 3.3. If there exist symmetric positive definite matrices Xi, matrices, Yi, Vi, Gi and Zi such
that

[
Gi + GT

i − Xi Ψ
∗ Xj

]
> 0, (83)

with Ψ = (AiκGi + Biκ DisYiCiκ + Biκ D−
is Zi)

T,
[

1 Zil
∗ Gi + GT

i − Xi

]
> 0, (84)

ViCiκ = CiκGi, (85)

∀κ = 1, . . . , µi, ∀(i, j) ∈ ℐ2, ∀s ∈ [1, η], ∀l ∈ [1, m], with

Hi = ZiG−1
i , Ki = YiV−1

i , Pi = X−1
i ; (86)

then, the closed-loop uncertain saturated switching system (69) is asymptotically stable ∀ x0 ∈ Ω and
for all switching sequences α(t).

Proof: The proof is similar to that given for Corollary 2.1 □
These results can be illustrated with the following example.

Example 3.1. Consider a SISO saturated switching discrete system with two modes given by the
following matrices:

A1(q1(t)) =

[
1 1
0 1 + q11

]
; B1(q1(t)) =

[
10
5

]
;

C1(q1(t)) =
[

1 + q12 1
]

;

A2(q2(t)) =

[
0 + q21 −1
0.0001 1

]
; B2(q2(t)) =

[
0.5
−2 + q22

]
;

C2(q2(t)) =
[

2 3
]

.

The vertices of the domain of uncertainties that affect the first mode are:

ν11 = (−0.1,−0.2), ν12 = (−0.1, 0.2)

ν13 = (0.1,−0.2), ν14 = (0.1, 0.2).

The vertices of the domain of uncertainties that affect the second mode are:

ν21 = (−0.2, 0.5), ν22 = (−0.2, −0.1)

ν23 = (0.3, 0.5), ν24 = (0.3,−0.1).

Using Theorem 2.6, a stabilizing controller for the nominal system is

K1 = −0.1000, K2 = 0.1622.

To test the robustness, we can use the Corollary 3.1 which leads to the following results:

P1 =

[
0.0208 −0.0133
−0.0133 0.0257

]
; P2 =

[
0.0320 0.0023
0.0023 0.0474

]

On the other hand, the use of Theorem 3.2 leads to the following results:

K1 = −0.0902, K2 = 0.1858.
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Figures 5, 6 and 7 concern the first method. In Figure 5, the switching signals α(t) and the evolution
of uncertainties used for simulation, are plotted. Figure 6 shows the obtained level set of stability∪N

i=1 ε(Pi, 1) which is well contained inside the sets of saturations, while Figure 7 presents some
system motions evolving inside the level set starting from different initial states.
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Figure 7 shows the level set of stability
∪N

i=1 ε(Pi, 1) using the second method of Theorem 3.2 which is
well contained inside the sets of saturations. The use of Theorem 3.3 leads to the following results:

K1 = −0.0752, K2 = 0.1386;

Figure 9 shows the level set of stability
∪N

i=1 ε(Pi, 1) obtained with Theorem 3.3, which is also well
contained inside the sets of saturations.
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3.3 Synthesis of non saturating controllers
The non saturating controllers who works inside a region of linear behavior can be obtained
from the previous results by replacing Dsi = I and D−

si = 0. The following result presents the
synthesis of such controllers.

Theorem 3.4. If there exist symmetric matrices Xi and matrices Yi such that
[

Xi (Aiκ Xi + BiκYiCiκ)
T

∗ Xj

]
> 0, (87)

[
1 YilCiκ
∗ Xi

]
> 0, (88)

ViCiκ = Ciκ Xi, (89)

∀ κ = 1, . . . , µi, ∀(i, j) ∈ ℐ2, ∀l ∈ [1, m], with, Ki = YiV−1
i , Pi = X−1

i ,
then the uncertain closed-loop switching system (69) is asymptotically stable ∀ x0 ∈ Ω and for all
switching sequences α(t).

To illustrate this result, the same system of Example 3.1 is used. Theorem 3.4 leads to the
following results:

P1 =

[
0.2574 0

0 0.2574

]
; P2 =

[
0.2930 0.0535
0.0535 0.3376

]
;
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Figures 5, 6 and 7 concern the first method. In Figure 5, the switching signals α(t) and the evolution
of uncertainties used for simulation, are plotted. Figure 6 shows the obtained level set of stability∪N

i=1 ε(Pi, 1) which is well contained inside the sets of saturations, while Figure 7 presents some
system motions evolving inside the level set starting from different initial states.
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Figure 7 shows the level set of stability
∪N

i=1 ε(Pi, 1) using the second method of Theorem 3.2 which is
well contained inside the sets of saturations. The use of Theorem 3.3 leads to the following results:

K1 = −0.0752, K2 = 0.1386;

Figure 9 shows the level set of stability
∪N

i=1 ε(Pi, 1) obtained with Theorem 3.3, which is also well
contained inside the sets of saturations.
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3.3 Synthesis of non saturating controllers
The non saturating controllers who works inside a region of linear behavior can be obtained
from the previous results by replacing Dsi = I and D−

si = 0. The following result presents the
synthesis of such controllers.

Theorem 3.4. If there exist symmetric matrices Xi and matrices Yi such that
[

Xi (Aiκ Xi + BiκYiCiκ)
T

∗ Xj

]
> 0, (87)

[
1 YilCiκ
∗ Xi

]
> 0, (88)

ViCiκ = Ciκ Xi, (89)

∀ κ = 1, . . . , µi, ∀(i, j) ∈ ℐ2, ∀l ∈ [1, m], with, Ki = YiV−1
i , Pi = X−1

i ,
then the uncertain closed-loop switching system (69) is asymptotically stable ∀ x0 ∈ Ω and for all
switching sequences α(t).

To illustrate this result, the same system of Example 3.1 is used. Theorem 3.4 leads to the
following results:

P1 =

[
0.2574 0

0 0.2574

]
; P2 =

[
0.2930 0.0535
0.0535 0.3376

]
;
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K1 = −0.0902; K2 = 0.1694.
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Fig. 10. Switching supervisor signal α(t)
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Fig. 12. Motion of the system with controllers obtained with Theorem 3.4

In Figure 5, the evolution of uncertainties is plotted, Figure 10 shows the sequence α(t). The
level set

∪N
i=1 ε(Pi, 1) presented in Figure 11, is also well contained inside the regions of linear

behavior. In Figure 12, the trajectories of the system are plotted.

Commennt 3.1. The application of all the proposed results to the same example, shows that the result
applied in two steps (Theorem 2.6 and Corollary 3.1) is the least conservative. However, it is worth
noting that the result introducing slack variables (Theorem 3.3) is also less conservative even applied
in one step. One can expect that this same result applied in two steps can be the less conservative one.

In this section, two different sufficient conditions of asymptotic stability are obtained for out-
put feedback control of uncertain switching discrete-time linear systems subject to actuator
saturations. These conditions allow the synthesis of stabilizing controllers inside a large re-
gion of saturation under LMIs formulation. Note that the state feedback control case and
the unsaturating controller case can be obtained as particular cases of the study presented in
this section. An illustrative example is studied by using the direct resolution of the proposed
LMIs. A comparison of the obtained solutions is also given.

4. Stabilization of saturated switching systems with structured uncertainties

The objective of this section is to extend the results of (Benzaouia et al., 2006) to uncertain
switching systems subject to actuator saturations by using output feedback control. This tech-
nique allows to design stabilizing controllers by output feedback for switching discrete-time
systems despite the presence of actuator saturations and uncertainties on the system param-
eters. The case of state feedback control is derived as a particular case. It is also shown that
the results obtained in this section with state feedback control are less conservative than those
presented in (Yu et al., 2007) where only the state feedback control case is addressed. The main
results of this section are published in (Benzaouia et al., 2009c).

4.1 Problem presentation
Let us consider the linear uncertain discrete-time switching system described by:

{
xt+1 = �α(t)xt + ℬα(t)sat(ut)

yt = �α(t)xt
(90)

where xt ∈ Rn, ut ∈ Rm are the state and the input respectively, sat(.) is the standard satura-
tion, yt ∈ Rp the output. α is a switching rule taking its values in the finite set I = {1, ..., N}.
The saturation function is assumed here to be normalized, i. e., ∣sat(ui∣ = min(1, ∣ui∣), i =
1, . . . m.
The system matrices are assumed to be uncertain and satisfy:

[�i(t) ℬi(t)] = [Ai Bi] + MiΓi [N1i N2i] (91)

Let the control be obtained by an output feedback control law:

ut = Kαyk = KαCαxt = Fαxt

The closed-loop system is given by:

xt+1 = �α(t)xt + ℬα(t)sat(KαCαxt) (92)

Defining the indicator function:

ξ(t) := [ξ1(t), ..., ξN(t)]T (93)

where ξi(t) = 1 if the switching system is in mode i and 0 otherwise, yields the following
representation for the closed-loop system:

xt+1 =
N

∑
i=1

ξi(t)[�i(t)xt + ℬi(t)sat(KiCixt)] (94)
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K1 = −0.0902; K2 = 0.1694.
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In Figure 5, the evolution of uncertainties is plotted, Figure 10 shows the sequence α(t). The
level set

∪N
i=1 ε(Pi, 1) presented in Figure 11, is also well contained inside the regions of linear

behavior. In Figure 12, the trajectories of the system are plotted.

Commennt 3.1. The application of all the proposed results to the same example, shows that the result
applied in two steps (Theorem 2.6 and Corollary 3.1) is the least conservative. However, it is worth
noting that the result introducing slack variables (Theorem 3.3) is also less conservative even applied
in one step. One can expect that this same result applied in two steps can be the less conservative one.

In this section, two different sufficient conditions of asymptotic stability are obtained for out-
put feedback control of uncertain switching discrete-time linear systems subject to actuator
saturations. These conditions allow the synthesis of stabilizing controllers inside a large re-
gion of saturation under LMIs formulation. Note that the state feedback control case and
the unsaturating controller case can be obtained as particular cases of the study presented in
this section. An illustrative example is studied by using the direct resolution of the proposed
LMIs. A comparison of the obtained solutions is also given.

4. Stabilization of saturated switching systems with structured uncertainties

The objective of this section is to extend the results of (Benzaouia et al., 2006) to uncertain
switching systems subject to actuator saturations by using output feedback control. This tech-
nique allows to design stabilizing controllers by output feedback for switching discrete-time
systems despite the presence of actuator saturations and uncertainties on the system param-
eters. The case of state feedback control is derived as a particular case. It is also shown that
the results obtained in this section with state feedback control are less conservative than those
presented in (Yu et al., 2007) where only the state feedback control case is addressed. The main
results of this section are published in (Benzaouia et al., 2009c).

4.1 Problem presentation
Let us consider the linear uncertain discrete-time switching system described by:

{
xt+1 = �α(t)xt + ℬα(t)sat(ut)

yt = �α(t)xt
(90)

where xt ∈ Rn, ut ∈ Rm are the state and the input respectively, sat(.) is the standard satura-
tion, yt ∈ Rp the output. α is a switching rule taking its values in the finite set I = {1, ..., N}.
The saturation function is assumed here to be normalized, i. e., ∣sat(ui∣ = min(1, ∣ui∣), i =
1, . . . m.
The system matrices are assumed to be uncertain and satisfy:

[�i(t) ℬi(t)] = [Ai Bi] + MiΓi [N1i N2i] (91)

Let the control be obtained by an output feedback control law:

ut = Kαyk = KαCαxt = Fαxt

The closed-loop system is given by:

xt+1 = �α(t)xt + ℬα(t)sat(KαCαxt) (92)

Defining the indicator function:

ξ(t) := [ξ1(t), ..., ξN(t)]T (93)

where ξi(t) = 1 if the switching system is in mode i and 0 otherwise, yields the following
representation for the closed-loop system:

xt+1 =
N

∑
i=1

ξi(t)[�i(t)xt + ℬi(t)sat(KiCixt)] (94)
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Assume that there exist N matrices H1, . . . , HN such that x(t) ∈ ℒ(Hi). Using the expression
in (10) and rewriting System (94) yields that:

xt+1 =
η

∑
s=1

N

∑
i=1

ξi(t)δis(t)�cis(t)xt; (95)

�cis(t) := �i(t) + ℬi(t)(DisKiCi + D−
is Hi), s ∈ [1, η]

4.2 Analysis and synthesis of stabilizability
Consider now the saturated uncertain switching system given by (95). The first result synthe-
sizing stabilizing controllers of the uncertain saturated switching system by output feedback
is now presented.

Theorem 4.1. If there exist symmetric matrices X1, . . . , XN, matrices Y1, . . . , YN, Z1, . . . , ZN,
V1, . . . , VN and a set of real positive scalars λijs, such that

⎡
⎣

Xi ΘT
is ΦT

is
∗ Xj − λijs Mi MT

i 0
∗ ∗ λijsI

⎤
⎦ > 0, (96)

∀(i, j) ∈ ℐ × ℐ , ∀s ∈ [1, . . . η]

CiXi = ViCi (97)[
1 Zil
∗ Xi

]
> 0, (98)

∀i ∈ ℐ , ∀l ∈ [1, . . . m]

where Θis = AiXi + Bi(DisYiCi + D−
is Zi) and Φis = N1iXi + N2i(DisYiCi + D−

is Zi). Then, the
uncertain switching system with input saturation in closed-loop (95) with

Ki = YiV−1 (99)

Hi = ZiX−1 (100)

is asymptotically stable ∀ x0 ∈ Ω =
∪N

i=1 ε(X−1
i , 1) and for all switching sequences α(t).

Proof: By using Lemma 2.1, for all Hi ∈ Rm×n with ∣Hil xt∣ < 1, l ∈ [1, m], there exist δi1 ≥ 0
,..., δiη ≥ 0 such that, sat(KiCixt) = ∑

η
s=1 δis(t)[DisKiCi + D−

is Hi]xt, δis(t) ≥ 0, ∑
η
s=1 δis(t) = 1.

System (94) is then rewritten as (95).
Consider the Lyapunov function candidate V(x) = xT

t (∑
N
i=1 ξi(t)Pi)xt. Computing its rate of

increase along the trajectories of system (95) yields:

∆V(xt) = xT
t+1(

N

∑
j=1

ξ j(t + 1)Pj)xt+1 − xT
t (

N

∑
i=1

ξi(t)Pi)xt

=
η

∑
s=1

N

∑
j=1

ξ j(t + 1)δisxT
t [�i + ℬi(DisFi + D−

is Hi)]
T Pj[�i

+ ℬi(DisFi + D−
is Hi)]xt −

N

∑
i=1

ξi(t)xT
t Pixt

Since, ∑
η
s=1 δis(t) = ∑N

j=1 ξ j(t + 1) = ∑N
i=1 ξi(t) = 1, one should obtain

∆V(xt) =
N

∑
j=1

N

∑
i=1

η

∑
s=1

ξi(t)ξ j(t + 1)δis(t)xT
t

(
[�i + ℬi(DisFi + D−

is Hi)]
T Pj[�i + ℬi(DisFi + D−

is Hi)]− Pi

)
xt

A sufficient condition to obtain ∆V(xt) < 0 is that:
[
�i + ℬi(DisFi + D−

is Hi)]
T Pj[�i + ℬi(DisFi + D−

is Hi)
]
− Pi = −Ψsij < 0 (101)

By applying Schur complement to (101), the following equivalent inequality is obtained:
[

Pi [�i + ℬi(DisKiCi + D−
is Hi)]

T

∗ P−1
j

]
> 0, (102)

Letting Xi = P−1
i , Yi = KiVi, CiXi = ViCi, Zi = HiXi and multiplying the above inequality on

both sides by diag(Xi, I) we get
[

Xi [�iXi + ℬi(DisKiCi + D−
is Hi)Xi]

⊤

∗ Xj

]
> 0, (103)

Taking account of (91), inequality (103) can be developed as follows:

−
[

Xi [AiXi + Bi(DisYiCi + D−
is Zi)]

⊤

∗ Xj

]
+

[
[N1iXi + N2i(DisYiCi + D−

is Zi)]
⊤

0

]

Γ⊤
i
[

0 −MT
i

]
+

[
0

−Mi

]
Γi

[
[N1iXi + N2i(DisYiCi + D−

is Zi)] 0
]
< 0,

by virtue of Lemma2.2, this inequality holds if and only if there exist positive scalars λijs such
that

−
[

Xi ΘT
is

∗ Xj

]
+ λijs

[
0

−Mi

] [
0 −MT

i
]
+

1
λijs

[
Φis 0

] [ ΦT
is

0

]
< 0,

∀(i, j) ∈ ℐ × ℐ , ∀s ∈ [1, . . . η].

Or in a compact form,
[

Xi − 1
λijs

ΦisΦT
is ΘT

is
∗ Xj − λijs Mi MT

i

]
> 0, (104)

∀(i, j) ∈ ℐ × ℐ , ∀s ∈ [1, η]

where Φis and Θis are defined before.
By Schur complement, inequality (104) is equivalent to (96). One can then bound the rate of
increase as follows,

∆V(xt) ≤ −γ(∥xt∥);
γ(∥xt∥) = minijsλmin(Ψijs)∥xt∥2.
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Assume that there exist N matrices H1, . . . , HN such that x(t) ∈ ℒ(Hi). Using the expression
in (10) and rewriting System (94) yields that:

xt+1 =
η

∑
s=1

N

∑
i=1

ξi(t)δis(t)�cis(t)xt; (95)

�cis(t) := �i(t) + ℬi(t)(DisKiCi + D−
is Hi), s ∈ [1, η]

4.2 Analysis and synthesis of stabilizability
Consider now the saturated uncertain switching system given by (95). The first result synthe-
sizing stabilizing controllers of the uncertain saturated switching system by output feedback
is now presented.

Theorem 4.1. If there exist symmetric matrices X1, . . . , XN, matrices Y1, . . . , YN, Z1, . . . , ZN,
V1, . . . , VN and a set of real positive scalars λijs, such that

⎡
⎣

Xi ΘT
is ΦT

is
∗ Xj − λijs Mi MT

i 0
∗ ∗ λijsI

⎤
⎦ > 0, (96)

∀(i, j) ∈ ℐ × ℐ , ∀s ∈ [1, . . . η]

CiXi = ViCi (97)[
1 Zil
∗ Xi

]
> 0, (98)

∀i ∈ ℐ , ∀l ∈ [1, . . . m]

where Θis = AiXi + Bi(DisYiCi + D−
is Zi) and Φis = N1iXi + N2i(DisYiCi + D−

is Zi). Then, the
uncertain switching system with input saturation in closed-loop (95) with

Ki = YiV−1 (99)

Hi = ZiX−1 (100)

is asymptotically stable ∀ x0 ∈ Ω =
∪N

i=1 ε(X−1
i , 1) and for all switching sequences α(t).

Proof: By using Lemma 2.1, for all Hi ∈ Rm×n with ∣Hil xt∣ < 1, l ∈ [1, m], there exist δi1 ≥ 0
,..., δiη ≥ 0 such that, sat(KiCixt) = ∑

η
s=1 δis(t)[DisKiCi + D−

is Hi]xt, δis(t) ≥ 0, ∑
η
s=1 δis(t) = 1.

System (94) is then rewritten as (95).
Consider the Lyapunov function candidate V(x) = xT

t (∑
N
i=1 ξi(t)Pi)xt. Computing its rate of

increase along the trajectories of system (95) yields:

∆V(xt) = xT
t+1(

N

∑
j=1

ξ j(t + 1)Pj)xt+1 − xT
t (

N

∑
i=1

ξi(t)Pi)xt

=
η

∑
s=1

N

∑
j=1

ξ j(t + 1)δisxT
t [�i + ℬi(DisFi + D−

is Hi)]
T Pj[�i

+ ℬi(DisFi + D−
is Hi)]xt −

N

∑
i=1

ξi(t)xT
t Pixt

Since, ∑
η
s=1 δis(t) = ∑N

j=1 ξ j(t + 1) = ∑N
i=1 ξi(t) = 1, one should obtain

∆V(xt) =
N

∑
j=1

N

∑
i=1

η

∑
s=1

ξi(t)ξ j(t + 1)δis(t)xT
t

(
[�i + ℬi(DisFi + D−

is Hi)]
T Pj[�i + ℬi(DisFi + D−

is Hi)]− Pi

)
xt

A sufficient condition to obtain ∆V(xt) < 0 is that:
[
�i + ℬi(DisFi + D−

is Hi)]
T Pj[�i + ℬi(DisFi + D−

is Hi)
]
− Pi = −Ψsij < 0 (101)

By applying Schur complement to (101), the following equivalent inequality is obtained:
[

Pi [�i + ℬi(DisKiCi + D−
is Hi)]

T

∗ P−1
j

]
> 0, (102)

Letting Xi = P−1
i , Yi = KiVi, CiXi = ViCi, Zi = HiXi and multiplying the above inequality on

both sides by diag(Xi, I) we get
[

Xi [�iXi + ℬi(DisKiCi + D−
is Hi)Xi]

⊤

∗ Xj

]
> 0, (103)

Taking account of (91), inequality (103) can be developed as follows:

−
[

Xi [AiXi + Bi(DisYiCi + D−
is Zi)]

⊤

∗ Xj

]
+

[
[N1iXi + N2i(DisYiCi + D−

is Zi)]
⊤

0

]

Γ⊤
i
[

0 −MT
i

]
+

[
0

−Mi

]
Γi

[
[N1iXi + N2i(DisYiCi + D−

is Zi)] 0
]
< 0,

by virtue of Lemma2.2, this inequality holds if and only if there exist positive scalars λijs such
that

−
[

Xi ΘT
is

∗ Xj

]
+ λijs

[
0

−Mi

] [
0 −MT

i
]
+

1
λijs

[
Φis 0

] [ ΦT
is

0

]
< 0,

∀(i, j) ∈ ℐ × ℐ , ∀s ∈ [1, . . . η].

Or in a compact form,
[

Xi − 1
λijs

ΦisΦT
is ΘT

is
∗ Xj − λijs Mi MT

i

]
> 0, (104)

∀(i, j) ∈ ℐ × ℐ , ∀s ∈ [1, η]

where Φis and Θis are defined before.
By Schur complement, inequality (104) is equivalent to (96). One can then bound the rate of
increase as follows,

∆V(xt) ≤ −γ(∥xt∥);
γ(∥xt∥) = minijsλmin(Ψijs)∥xt∥2.
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Using (Hu et al., 2002), the inclusion condition (29) can also be transformed to the equivalent
LMI (98) by virtue of the results of (Boyd et al., 1994). □
To obtain larger ellipsoid domains ε(Pi, 1), we can use a shape reference set �R ⊂ Rn, in
terms of a polyhedron or ellipsoid to measure the size of the domain of attraction.
For a set ℒ ⊂ Rn which contains the origin, define µ(�R,ℒ) = sup {µ > 0, µ�R ⊂ ℒ}.
Here, we choose �R to be a polyhedral defined as �R = co

{
ω1, ω2, ... , ωq

}
, where

ω1, ω2, ... , ωq are a prior given points in Rn.
The problem can be formulated as the following constrained optimization problem

(Pb.4) :

⎧⎨
⎩

maxXi>0,Yi ,Zi ,λijs (µi)

s.t. µ�R ⊂ ε(Pi, 1)
(96), (98),

i = 1, . . . , N

As is explained in (Hu et al., 2001) and ( Hu and Lin, 2002), the constraint µ�R ⊂ ε(Pi, 1) is
satisfied if the following matrix inequalities hold:

[
µ−2

i ωT
l

ωl Xi

]
≥ 0, (105)

∀i ∈ ℐ , ∀l ∈ [1, q]

The problem of enlarging the domain of attraction can be reduced to an LMI optimization
problem defined as follows:

(Pb.5) :

⎧⎨
⎩

minXi>0,Yi ,Zi ,λijs (γi)

s.t. (96), (98), (105)
i = 1, . . . , N

where γi = µ−2
i .

Commennt 4.1. The results of Theorem 4.1 applies directly to switching systems with state feedback
control by taking Ci = I. In this case, these results can be compared to the one given in (Yu et
al.,2007). The fact that the scalars λijs are all kept equal in (Yu et al.,2007), makes the result obviously
more conservative. An example will show this conservatism.

In order to more improve the result of Theorem 4.1 by introducing additional slack variables,
the following corollary is presented.

Corollary 4.1. If there exist symmetric matrices Xi > 0, matrices Gi, Yi, Vi, Zi and positive scalars
λijs such that

⎡
⎢⎢⎣

GT
i + Gi − Xi ΥT

is 0 ΛT
is

∗ Xj λijs Mi 0
∗ ∗ λijsI 0
∗ ∗ ∗ λijsI

⎤
⎥⎥⎦ > 0, (106)

∀(i, j) ∈ ℐ2, ∀s ∈ [1, . . . η]

CiGi = ViCi (107)[
1 Zil
∗ GT

i + Gi − Xi

]
> 0, (108)

∀i ∈ ℐ , ∀s ∈ [1, . . . η], ∀l ∈ [1, . . . m]

where Υis = AiGi + Bi(DisYiCi + D−
is Zi) and Λis = N1iGi + N2i(DisYiCi + D−

is Zi).
Then, the uncertain switching system with input saturation in the closed-loop (95) with

Ki = YiV−1 (109)

Hi = ZiG−1 (110)

is asymptotically stable ∀ x0 ∈ Ω =
∪N

i=1 ε(X−1
i , 1) and for all switching sequences α(t).

Proof: It was proven in (Benzaouia et al., 2004) and (Benzaouia et al., 2006) that condition (102)
is feasible if and only if there exists non singular matrices Gi such that the following inequality
holds:

[
Gi + GT

i − Xi GT
i [�i + ℬi(DisKiCi + D−

is Hi)]
T

∗ Xj

]
> 0, (111)

∀(i, j) ∈ ℐ × ℐ , ∀s ∈ [1, η]

where Xi = P−1
i . The same reasoning is then followed as in the proof of Theorem 4.1 leading

to (106). Inequality (108) was also proven in (Benzaouia et al., 2006) by using (Boyd et al., 1994).
□
These results can be illustrated with the following example.

Example 4.1. Consider a SISO saturated switching discrete-time system with two modes given by
the following matrices:

A1 =

[
1 1
0 1

]
, B1 =

[
10
5

]
, M1 = 0.1I, N11 = N12 = 0.01I,

A2 =

[
0 −1
0 1

]
, B2 =

[
0.5
−2

]
, M2 = 0.1I, N21 = N22 = 0.01I,

By solving the optimization problem (Pb.5) for the above system, we can obtain the following results:

P1 = 10E − 03
[

4.3324 1.2516
1.2516 4.3324

]
; P2 = 10E − 03

[
4.3988 2.0934
2.0934 6.1433

]
,

H1 = [−0.0261536 − 0.0653823]; H2 = [−0.0000192 0.0717335]

K1 = −0.1000089; K2 = 0.1256683

The corresponding figures are given by Figure13 and Figure 14. By applying Corollary 4.1, the follow-
ing results are obtained:

P1 = 10E − 03
[

1.0047 0.1917
0.1917 2.0626

]
; P2 = 10E − 04

[
7.380 1.823
1.823 23.530

]
,
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Using (Hu et al., 2002), the inclusion condition (29) can also be transformed to the equivalent
LMI (98) by virtue of the results of (Boyd et al., 1994). □
To obtain larger ellipsoid domains ε(Pi, 1), we can use a shape reference set �R ⊂ Rn, in
terms of a polyhedron or ellipsoid to measure the size of the domain of attraction.
For a set ℒ ⊂ Rn which contains the origin, define µ(�R,ℒ) = sup {µ > 0, µ�R ⊂ ℒ}.
Here, we choose �R to be a polyhedral defined as �R = co

{
ω1, ω2, ... , ωq

}
, where

ω1, ω2, ... , ωq are a prior given points in Rn.
The problem can be formulated as the following constrained optimization problem

(Pb.4) :

⎧⎨
⎩

maxXi>0,Yi ,Zi ,λijs (µi)

s.t. µ�R ⊂ ε(Pi, 1)
(96), (98),

i = 1, . . . , N

As is explained in (Hu et al., 2001) and ( Hu and Lin, 2002), the constraint µ�R ⊂ ε(Pi, 1) is
satisfied if the following matrix inequalities hold:

[
µ−2

i ωT
l

ωl Xi

]
≥ 0, (105)

∀i ∈ ℐ , ∀l ∈ [1, q]

The problem of enlarging the domain of attraction can be reduced to an LMI optimization
problem defined as follows:

(Pb.5) :

⎧⎨
⎩

minXi>0,Yi ,Zi ,λijs (γi)

s.t. (96), (98), (105)
i = 1, . . . , N

where γi = µ−2
i .

Commennt 4.1. The results of Theorem 4.1 applies directly to switching systems with state feedback
control by taking Ci = I. In this case, these results can be compared to the one given in (Yu et
al.,2007). The fact that the scalars λijs are all kept equal in (Yu et al.,2007), makes the result obviously
more conservative. An example will show this conservatism.

In order to more improve the result of Theorem 4.1 by introducing additional slack variables,
the following corollary is presented.

Corollary 4.1. If there exist symmetric matrices Xi > 0, matrices Gi, Yi, Vi, Zi and positive scalars
λijs such that

⎡
⎢⎢⎣

GT
i + Gi − Xi ΥT

is 0 ΛT
is

∗ Xj λijs Mi 0
∗ ∗ λijsI 0
∗ ∗ ∗ λijsI

⎤
⎥⎥⎦ > 0, (106)

∀(i, j) ∈ ℐ2, ∀s ∈ [1, . . . η]

CiGi = ViCi (107)[
1 Zil
∗ GT

i + Gi − Xi

]
> 0, (108)

∀i ∈ ℐ , ∀s ∈ [1, . . . η], ∀l ∈ [1, . . . m]

where Υis = AiGi + Bi(DisYiCi + D−
is Zi) and Λis = N1iGi + N2i(DisYiCi + D−

is Zi).
Then, the uncertain switching system with input saturation in the closed-loop (95) with

Ki = YiV−1 (109)

Hi = ZiG−1 (110)

is asymptotically stable ∀ x0 ∈ Ω =
∪N

i=1 ε(X−1
i , 1) and for all switching sequences α(t).

Proof: It was proven in (Benzaouia et al., 2004) and (Benzaouia et al., 2006) that condition (102)
is feasible if and only if there exists non singular matrices Gi such that the following inequality
holds:

[
Gi + GT

i − Xi GT
i [�i + ℬi(DisKiCi + D−

is Hi)]
T

∗ Xj

]
> 0, (111)

∀(i, j) ∈ ℐ × ℐ , ∀s ∈ [1, η]

where Xi = P−1
i . The same reasoning is then followed as in the proof of Theorem 4.1 leading

to (106). Inequality (108) was also proven in (Benzaouia et al., 2006) by using (Boyd et al., 1994).
□
These results can be illustrated with the following example.

Example 4.1. Consider a SISO saturated switching discrete-time system with two modes given by
the following matrices:

A1 =

[
1 1
0 1

]
, B1 =

[
10
5

]
, M1 = 0.1I, N11 = N12 = 0.01I,

A2 =

[
0 −1
0 1

]
, B2 =

[
0.5
−2

]
, M2 = 0.1I, N21 = N22 = 0.01I,

By solving the optimization problem (Pb.5) for the above system, we can obtain the following results:

P1 = 10E − 03
[

4.3324 1.2516
1.2516 4.3324

]
; P2 = 10E − 03

[
4.3988 2.0934
2.0934 6.1433

]
,

H1 = [−0.0261536 − 0.0653823]; H2 = [−0.0000192 0.0717335]

K1 = −0.1000089; K2 = 0.1256683

The corresponding figures are given by Figure13 and Figure 14. By applying Corollary 4.1, the follow-
ing results are obtained:

P1 = 10E − 03
[

1.0047 0.1917
0.1917 2.0626

]
; P2 = 10E − 04

[
7.380 1.823
1.823 23.530

]
,
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Fig. 13. Inclusion of the ellipsoids inside the polyhedral sets using Theorem 4.1
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H1 = [−0.0179753 − 0.0405034]; H2 = [−0.0000072 0.0480397]

K1 = −0.0597163; K2 = 0.0365389.

The corresponding figures are given by Figure 15 and Figure 16. In order to compare the present results
with (Yu et al., 2007) for state feedback control, the same example is considered. The results of Theorem
4.1 give:

P1 = 10E − 08
[

8.656 60
60 6900

]
P2 = 10E − 08

[
1.691 7.501
7.501 6750

]
,

H1 = [−0.0002470 − 0.0060812]; H2 = [−0.0000081 0.0081436]

F1 = [−0.0003254 − 0.0099873]; F2 = [−0.0068339 0.6156659]

while the results of (Yu et al., 2007) give:

P1 = 10E − 07
[

2 8
8 773

]
; P2 = 10E − 08

[
4.894 20

20 7630

]
,

H1 = [−0.0003203 − 0.0066782]; H2 = [−0.0000016 0.0086701]

F1 = [−0.0050262 − 0.3821976]; F2 = [−0.0112893 0.3695061]

The corresponding level sets are depicted in Figure 17 and Figure 18 where the conservatism of the
results of (Yu et al., 2007) is obvious.
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This section studied uncertain switching systems with output feedback control which extends
the results of (Yu et al., 2007) given with state feedback control. In order to compare these two
results, a numerical study using only the particular case of the present work, as mentioned by
the Comment 4.1, is also presented. The obtained improvements with the methods presented
in this work are shown in Figure 17 and Figure 18. A numerical example is used to illustrate
all these techniques.

5. CONCLUSION

In this chapter, two main different sufficient conditions of asymptotic stability are obtained
for switching discrete-time linear systems subject to actuator saturations for each case: state
feedback and output feedback control. The first allows the synthesis of stabilizing controllers
inside a large region of linear behavior while the second applies the idea of Lemma (Hu et
al., 2002) which rewrites the saturation function under a combination of 2m elements to obtain
stabilizing controllers tolerating saturations to take effect. A particular attention is given to
the output feedback case which has additive complexity due to the output equation. In this
sense, three different LMIs are presented for this case. The main results of this work are given
under LMIs formulation leading to the design of the stabilizing state feedback and output
feedback controllers for the system. Even the dynamical system is a switching system, it is
shown that the set Ω formed by the union of all the ellipsoid level sets associated to each
subsystem, constitutes a set of asymptotic stability. The first time that this important result is
established for saturated switching systems is in (Benzaouia et al., 2006). Two illustrative ex-
amples are studied by using the solution of the proposed LMIs. A comparison of the obtained
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H1 = [−0.0179753 − 0.0405034]; H2 = [−0.0000072 0.0480397]

K1 = −0.0597163; K2 = 0.0365389.

The corresponding figures are given by Figure 15 and Figure 16. In order to compare the present results
with (Yu et al., 2007) for state feedback control, the same example is considered. The results of Theorem
4.1 give:

P1 = 10E − 08
[

8.656 60
60 6900

]
P2 = 10E − 08

[
1.691 7.501
7.501 6750

]
,

H1 = [−0.0002470 − 0.0060812]; H2 = [−0.0000081 0.0081436]

F1 = [−0.0003254 − 0.0099873]; F2 = [−0.0068339 0.6156659]

while the results of (Yu et al., 2007) give:

P1 = 10E − 07
[

2 8
8 773

]
; P2 = 10E − 08

[
4.894 20

20 7630

]
,

H1 = [−0.0003203 − 0.0066782]; H2 = [−0.0000016 0.0086701]

F1 = [−0.0050262 − 0.3821976]; F2 = [−0.0112893 0.3695061]

The corresponding level sets are depicted in Figure 17 and Figure 18 where the conservatism of the
results of (Yu et al., 2007) is obvious.
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This section studied uncertain switching systems with output feedback control which extends
the results of (Yu et al., 2007) given with state feedback control. In order to compare these two
results, a numerical study using only the particular case of the present work, as mentioned by
the Comment 4.1, is also presented. The obtained improvements with the methods presented
in this work are shown in Figure 17 and Figure 18. A numerical example is used to illustrate
all these techniques.

5. CONCLUSION

In this chapter, two main different sufficient conditions of asymptotic stability are obtained
for switching discrete-time linear systems subject to actuator saturations for each case: state
feedback and output feedback control. The first allows the synthesis of stabilizing controllers
inside a large region of linear behavior while the second applies the idea of Lemma (Hu et
al., 2002) which rewrites the saturation function under a combination of 2m elements to obtain
stabilizing controllers tolerating saturations to take effect. A particular attention is given to
the output feedback case which has additive complexity due to the output equation. In this
sense, three different LMIs are presented for this case. The main results of this work are given
under LMIs formulation leading to the design of the stabilizing state feedback and output
feedback controllers for the system. Even the dynamical system is a switching system, it is
shown that the set Ω formed by the union of all the ellipsoid level sets associated to each
subsystem, constitutes a set of asymptotic stability. The first time that this important result is
established for saturated switching systems is in (Benzaouia et al., 2006). Two illustrative ex-
amples are studied by using the solution of the proposed LMIs. A comparison of the obtained
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solutions is also given.
Further, sufficient conditions of stabilization of switching linear discrete-time systems with
polytopic and structured uncertainties are also obtained. These conditions are given under
LMIs form. Both the cases of feedback control and output control are studied for polytopic
uncertainties. However, for structured uncertainties, the output feedback control is presented
extending the results of (Yu et al., 2007) given with state feedback control. A comparison study
is given with a numerical particular case. The obtained improvements with our method are
also shown. A numerical example is used to illustrate all these techniques. As a perspective,
two new works developed for switching systems without saturation, the first concerns pos-
itive switching systems (Benzaouia and Tadeo, 2008) while the second concerns the output
feedback problem (Bara and Boutayeb, 2006) can be used with saturated controls.
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solutions is also given.
Further, sufficient conditions of stabilization of switching linear discrete-time systems with
polytopic and structured uncertainties are also obtained. These conditions are given under
LMIs form. Both the cases of feedback control and output control are studied for polytopic
uncertainties. However, for structured uncertainties, the output feedback control is presented
extending the results of (Yu et al., 2007) given with state feedback control. A comparison study
is given with a numerical particular case. The obtained improvements with our method are
also shown. A numerical example is used to illustrate all these techniques. As a perspective,
two new works developed for switching systems without saturation, the first concerns pos-
itive switching systems (Benzaouia and Tadeo, 2008) while the second concerns the output
feedback problem (Bara and Boutayeb, 2006) can be used with saturated controls.
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Abstract
In this chapter, a methodology for robust adaptive control design for a class of switched non-
linear systems is developed. Under extensions of typical adaptive control assumptions, a
leakage-type adaptive control scheme guarantees stability for systems with bounded distur-
bances and parameters without requiring a priori knowledge on such parameters or distur-
bances. The problem reduces to an analysis of an exponentially stable and input-to-state sta-
ble (ISS) system driven by piecewise continuous and impulsive inputs due to plant parameter
switching and variation. As a result, a separation between robust stability and robust perfor-
mance and clear guidelines for performance optimization via ISS bounds are obtained. The
results are demonstrated through example simulations, which follow the developed theory
and demonstrate superior robustness of stability and performance relative to non-adaptive
and other adaptive methods such as projection and deadzone adaptive controllers.

1. Introduction

Switched and hybrid systems have been gaining considerable interest in both research and in-
dustrial control communities. This is motivated by the need for systematic and formal meth-
ods to control such systems. These issues arise in systems with discrete changes in energy
exchange elements due to intermittent interaction with other systems or with an environment
or due to the nature of their constitutive relations. This is common in robotic and mechatronic
systems with contact and impact effects, fluidic systems with valves or phase changes, and
electrical circuits with switches.
Despite numerous interesting publications on hybrid systems, there is a lack of constructive
methods for control of a nontrivial class of switched systems with a priori stability and per-
formance guarantees due to the difficulty of this problem. In terms of stability and response
of switched systems, several results have been obtained in recent years, see (10; 2; 25) and
references therein. In this context, sufficient conditions for stability such as common Lya-
punov functions and average dwell time (10) are the most commonly studied approaches.
A corresponding control design requires switching controller gains such that all subsystems
are made stable and such that a common Lyapunov function condition is satisfied, which for
LTI systems requires system matrices to commute or be symmetric, see (17; 18) for more ex-
plicit results. In order to verify that such a condition is met, the system is partitioned into
known subsystems and a set of linear matrix inequalities, of increasing order with the num-
ber of subsystems, is solved if a solution is feasible. The other class of results requires that
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all subsystems are stable (or with some known briefly visited unstable modes) and switching
is slow enough on average, average dwell time condition (10). The corresponding controller de-
sign requires gains to be adjusted to guarantee the stability of each frozen configuration and
knowledge of worst case decay rate among subsystems and condition number of Lyapunov
matrices in order to compute the maximum admissible switching speed. If plant switching
exceeds this switching speed then stability can no longer be guaranteed. Analogous analysis
results have been extended for systems with disturbances (22) and with some uncertainties
(23) as well as related work for linear-parameter varying (LPV) systems in (20; 12). Thus,
there is a need for more explicit methods that can be constructively used to design controllers
for stable switched systems independent of the success of heuristics or feasibility of complex
computational methods.
Adaptive control is another popular approach to deal with system uncertainty. The problem
with conventional adaptive controllers is that the transient performance is not characterized
and stability with respect to bounded parameter variations or disturbances is not guaran-
teed. Robust adaptive controllers, (6), developed to address the presence of disturbances and
non-parametric uncertainties, are typically based on projection, switching-sigma or deadzone
adaptation laws that require a priori known bounds on parameters, and in some cases dis-
turbances as well, in order to ensure state boundedness. Extensions to some classes of time
varying systems have been developed in (13; 14; 15; 24). However, the results are restricted to
smoothly varying parameters with known bounds and typically require additional restrictive
conditions such as slowly varying unknown parameters (24) or constant and known input
vector parameters (14), in order to ensure state boundedness. In this case, such a conclusion
is of very little practical importance if the error can not be reduced to an acceptable level by
increasing the adaptation or feedback gains or using a better nominal estimate of the plant
parameters. Furthermore, performance with respect to rejection of disturbances as well as the
transient response remain primarily unknown.
However, a leakage-type modification as will be shown in this chapter, achieves internal expo-
nential stability and input-to-state stability (ISS), for the class of systems under consideration,
without need for persistence of excitation as required in (6). In this regard, projection and
switching-sigma modifications have been favored over fixed-sigma modifications, (6) due to
its inability to achieve zero steady-state tracking when parameters are constant and distur-
bances vanish. However, this is a situation of no interest to this paper since the focus is on
time varying switching systems. The developed control methodology, which is a general-
ization of fixed-sigma modification, yields strong robustness to time varying and switching
parameters without requiring a priori known bounds on such parameters, as typically needed
in projection and switching-sigma modifications.
In this chapter, the development and formulation of an adaptive control methodology for a
class of switched nonlinear systems is presented. Under extensions of typical adaptive control
assumptions, a leakage-type adaptive control scheme is developed for systems with piecewise
differentiable bounded parameters and piecewise continuous bounded disturbances without
requiring a priori knowledge on such parameters or disturbances. This yields a separation
between robust stability and robust performance and clear guidelines for performance opti-
mization via ISS bounds.
The remainder of the chapter is organized as follows. Section 2 presents the basic adaptive
controller methodology. Analysis of the performance of the control system along with design
guidelines is discussed in Section 3. Section 4 gives an example simulation demonstrating
the key characteristics of the control system as well as comparing it with other non-adaptive

and adaptive techniques such as projection and dead-zone. Conclusions are given in Section
5. In this chapter, λ(.) and λ(.) denote the maximal and minimal eigenvalues of a symmetric
matrix, ∥.∥ the euclidian norm, and diag(., ., . . .) denotes a block diagonal matrix.

2. Methodology

2.1 Parameterized Switched Systems
A hybrid switched system is a system that switches between different vector fields in a differ-
ential equation (or a difference equation) each active during a period of time. In this chapter
we consider feedback control of continuous-time switched time varying systems described
by:

ẋ(t) = fi(x, t,u,d), ti−1 ≤ t < ti

y(t) = hi(x, t), ti−1 ≤ t < ti

i(t)+ = g(i(t), x, t) (1)

where x is the continuous state, d is for disturbances, u is the control input and y is measured
output. Furthermore, i(t) ∈ {1,2,3 . . .} is a piecewise constant signal with i denoting the ith

switched subsystem active during a time interval [ti−1, ti), where ti is the ith switching time.
The signal i(t), usually referred to as the switching function, is the discrete state of this hybrid
system. The discrete state is governed by the discrete dynamics of g(i(t), x, t), which sees the
continuous state x as an input. This means switching may be triggered by a time event or a
state event, e.g. x reaching certain threshold values, or even memory, i.e, past values for i(t).
on state only implicitly with enforced
In this chapter, we view a switching system as one parameterized by a time varying vector of
parameters, which is piecewise differentiable, see Equation (2). This is a reasonable represen-
tation since it captures many physical systems that undergo switching dynamics, thus we will
focus on such systems described by:

ẋ = f (x, a,u,d)
y = h(x, a)

a(t) = ai(t), ti−1 ≤ t < ti, i = 1,2, . . .

i(t)+ = g(i(t), x, t) (2)

Therefore, we embed the switching behavior in the piecewise changes in a(t), which again
may be triggered by state or time driven events. ai(t) ∈ C1, i.e., at least one time continuously
differentiable. This means a(t) is piecewise continuous, with a well defined bounded deriva-
tive everywhere except at points ti where ȧ = d a/dt consists of dirac-delta functions. Also the
points of discontinuity of a, which are distinct and form an infinitely countable set, are sepa-
rated by a nonzero dwell time, i.e., there are no Zeno phenomena (11; 21). This is a reasonable
assumption since this is how most physical systems behave. The main assumptions on the
class of systems under consideration are formally stated below:

Assumption 1
For a switched system given by Equation (2) the set of switches associated with a switching sequence
{(ti, ai)} is infinitely countable and ∃ a scalar µ > 0 such that ti − ti−1 ≥ µ ∀ i.

Assumption 2 d ∈ Rk is uniformly bounded and piecewise continuous.
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all subsystems are stable (or with some known briefly visited unstable modes) and switching
is slow enough on average, average dwell time condition (10). The corresponding controller de-
sign requires gains to be adjusted to guarantee the stability of each frozen configuration and
knowledge of worst case decay rate among subsystems and condition number of Lyapunov
matrices in order to compute the maximum admissible switching speed. If plant switching
exceeds this switching speed then stability can no longer be guaranteed. Analogous analysis
results have been extended for systems with disturbances (22) and with some uncertainties
(23) as well as related work for linear-parameter varying (LPV) systems in (20; 12). Thus,
there is a need for more explicit methods that can be constructively used to design controllers
for stable switched systems independent of the success of heuristics or feasibility of complex
computational methods.
Adaptive control is another popular approach to deal with system uncertainty. The problem
with conventional adaptive controllers is that the transient performance is not characterized
and stability with respect to bounded parameter variations or disturbances is not guaran-
teed. Robust adaptive controllers, (6), developed to address the presence of disturbances and
non-parametric uncertainties, are typically based on projection, switching-sigma or deadzone
adaptation laws that require a priori known bounds on parameters, and in some cases dis-
turbances as well, in order to ensure state boundedness. Extensions to some classes of time
varying systems have been developed in (13; 14; 15; 24). However, the results are restricted to
smoothly varying parameters with known bounds and typically require additional restrictive
conditions such as slowly varying unknown parameters (24) or constant and known input
vector parameters (14), in order to ensure state boundedness. In this case, such a conclusion
is of very little practical importance if the error can not be reduced to an acceptable level by
increasing the adaptation or feedback gains or using a better nominal estimate of the plant
parameters. Furthermore, performance with respect to rejection of disturbances as well as the
transient response remain primarily unknown.
However, a leakage-type modification as will be shown in this chapter, achieves internal expo-
nential stability and input-to-state stability (ISS), for the class of systems under consideration,
without need for persistence of excitation as required in (6). In this regard, projection and
switching-sigma modifications have been favored over fixed-sigma modifications, (6) due to
its inability to achieve zero steady-state tracking when parameters are constant and distur-
bances vanish. However, this is a situation of no interest to this paper since the focus is on
time varying switching systems. The developed control methodology, which is a general-
ization of fixed-sigma modification, yields strong robustness to time varying and switching
parameters without requiring a priori known bounds on such parameters, as typically needed
in projection and switching-sigma modifications.
In this chapter, the development and formulation of an adaptive control methodology for a
class of switched nonlinear systems is presented. Under extensions of typical adaptive control
assumptions, a leakage-type adaptive control scheme is developed for systems with piecewise
differentiable bounded parameters and piecewise continuous bounded disturbances without
requiring a priori knowledge on such parameters or disturbances. This yields a separation
between robust stability and robust performance and clear guidelines for performance opti-
mization via ISS bounds.
The remainder of the chapter is organized as follows. Section 2 presents the basic adaptive
controller methodology. Analysis of the performance of the control system along with design
guidelines is discussed in Section 3. Section 4 gives an example simulation demonstrating
the key characteristics of the control system as well as comparing it with other non-adaptive

and adaptive techniques such as projection and dead-zone. Conclusions are given in Section
5. In this chapter, λ(.) and λ(.) denote the maximal and minimal eigenvalues of a symmetric
matrix, ∥.∥ the euclidian norm, and diag(., ., . . .) denotes a block diagonal matrix.

2. Methodology

2.1 Parameterized Switched Systems
A hybrid switched system is a system that switches between different vector fields in a differ-
ential equation (or a difference equation) each active during a period of time. In this chapter
we consider feedback control of continuous-time switched time varying systems described
by:

ẋ(t) = fi(x, t,u,d), ti−1 ≤ t < ti

y(t) = hi(x, t), ti−1 ≤ t < ti

i(t)+ = g(i(t), x, t) (1)

where x is the continuous state, d is for disturbances, u is the control input and y is measured
output. Furthermore, i(t) ∈ {1,2,3 . . .} is a piecewise constant signal with i denoting the ith

switched subsystem active during a time interval [ti−1, ti), where ti is the ith switching time.
The signal i(t), usually referred to as the switching function, is the discrete state of this hybrid
system. The discrete state is governed by the discrete dynamics of g(i(t), x, t), which sees the
continuous state x as an input. This means switching may be triggered by a time event or a
state event, e.g. x reaching certain threshold values, or even memory, i.e, past values for i(t).
on state only implicitly with enforced
In this chapter, we view a switching system as one parameterized by a time varying vector of
parameters, which is piecewise differentiable, see Equation (2). This is a reasonable represen-
tation since it captures many physical systems that undergo switching dynamics, thus we will
focus on such systems described by:

ẋ = f (x, a,u,d)
y = h(x, a)

a(t) = ai(t), ti−1 ≤ t < ti, i = 1,2, . . .

i(t)+ = g(i(t), x, t) (2)

Therefore, we embed the switching behavior in the piecewise changes in a(t), which again
may be triggered by state or time driven events. ai(t) ∈ C1, i.e., at least one time continuously
differentiable. This means a(t) is piecewise continuous, with a well defined bounded deriva-
tive everywhere except at points ti where ȧ = d a/dt consists of dirac-delta functions. Also the
points of discontinuity of a, which are distinct and form an infinitely countable set, are sepa-
rated by a nonzero dwell time, i.e., there are no Zeno phenomena (11; 21). This is a reasonable
assumption since this is how most physical systems behave. The main assumptions on the
class of systems under consideration are formally stated below:

Assumption 1
For a switched system given by Equation (2) the set of switches associated with a switching sequence
{(ti, ai)} is infinitely countable and ∃ a scalar µ > 0 such that ti − ti−1 ≥ µ ∀ i.

Assumption 2 d ∈ Rk is uniformly bounded and piecewise continuous.
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Assumption 3 a ∈ �a is uniformly bounded and piecewise differentiable, where the set �a is an ad-
missible, but not necessarily known, set of parameters.

Note that by allowing piecewise changes in a the parametrization allows structural changes
in the system if we overparametrize such that all possible structural terms are included. Then
some parameters may switch to or from the value of zero as structural changes take place in
the system.

2.2 Robust Adaptive Control
In this section, we discuss the basic methodology based on observation of the general struc-
ture of the adaptive control problem. In standard adaptive control for linearly-parameterized
systems we usually have control and adaptation laws of the form:

u = g(xm, â, ˙̂a,yr, t)
˙̂a = fa(xm, â,yr, t) (3)

where u is the control signal, â is an estimate of plant parameter vector a ∈ Sa, where Sa is
an admissible set of parameters, xm is measured state variables, and yr is a desired reference
trajectory to be followed. This yields the following closed loop error dynamics :

ėc = fe(ec, ã, t) + d(t)
˙̃a = fa(ec, â, t)− ȧ (4)

where ec represents a generalized tracking error vector, which includes state estimation error
in general output feedback problems and can depend nonlinearly on the plant states as in
backstepping designs, ã = â − a is parameter estimation error, and d is the disturbance.
In standard adaptive control we typically design the control and adaptation laws, Equation
(3), such that ∀ a ∈ Sa we have:

eT
c P fe + ãTΓ(t)−1 fa ≤ −eT

c Cec (5)

where matrices P > 0 and C > 0 are chosen depending on the particular algorithm, e.g. choice
of reference model and the diagonal matrix Γ(t)−1 = diag(Γ−1

o ,γ−1
ρ ∣b(t)∣)> 0 is an equivalent

generalized adaptation gain matrix, where diagonal matrix Γo > 0 and scalar γρ > 0 are the
actual adaptation gains used in the adaptation laws. Whereas, b(t) is a scalar plant parameter,
usually the high frequency gain, which appears in Γ in some adaptive designs. The following
additional assumption is made for b(t):

Assumption 4 b(t) is an unknown scalar function such that b(t) ∕= 0 ∀t, and sign of b(t) is known
and constant.

This is sufficient to stabilize the system with constant parameters and no disturbances. How-
ever, since the error dynamics is not ISS stable, stability is no longer guaranteed in the pres-
ence of bounded inputs such as d and ȧ. In order to deal with time varying and switching
dynamics, a modification to the adaptation law will be pursued.
Now consider the following modified adaptation law:

˙̂a = fa(ec, â, t)− L(â − a∗) (6)

with the diagonal matrix L = diag(Lo, Lρ) > 0 and a∗(t) is an arbitrarily chosen piecewise
continuous bounded vector, which is an additional estimate of the plant parameter vector.
Then the same system in Equation (4) with the modified adaptation law becomes:

ėc = fe(ec, ã, t) + d(t)
˙̃a = fa(ec, â, t)− Lã + L(a∗ − a)− ȧ (7)

The modified adaptation law shown above is similar to leakage adaptive laws (6), which have
been used to improve robustness with respect to unstructured uncertainties. The leakage
adaptation law, also known as fixed-sigma, uses Lo = σ Γo, where σ > 0 is a scalar and the
vector a∗(t) above is usually not included or is a constant. In fact, the key contribution from
the generalization presented here is not in the algebraic difference relative to leakage adaptive
laws (6) but rather in how the algorithm is utilized and proven to achieve new properties for
control of rapidly varying and switching systems. In particular, internal exponential and ISS
stability of the closed loop system using this leakage-type adaptive controller, without need
for persistence of excitation as required in (6), is shown and used to guarantee stability of the
state xc = [eT

c , ãT ]T , see Theorem 1 below.

Theorem 1 If there exits matrices P,Γo,γρ,C > 0 such that (5) is satisfied for ȧ = d = 0 with
Γ(t)−1 = diag(Γ−1

o ,γ−1
ρ ∣b(t)∣) > 0 and Assumption 2.4 is satisfied then the system given by

Equation (7) with d, ȧ ∕= 0 and diagonal L > 0 is :
(i) Uniformly internally exponentially stable and ISS stable.
(ii) If Assumptions (2.1-2.3) are satisfied and a∗(t) is chosen as a piecewise continuous bounded vector
then state xc = [eT

c , ãT ]T is bounded with

∥ec(t)∥ ≤ c1∥xc(to)∥e−α(t−to) + c2

∫ t

to

eα(τ−t)∥v(τ)∥dτ

where c1, c2 are constants, α = λ̄(diag(P−1C, L)), and v = [P1/2d,Γ−1/2(L(a∗ − a)− ȧ)]T.

The proof of this result is found in Appendix A.

2.3 Remarks
This section presents some remarks summarizing the implications of this result.

∙ The effect of plant variation and uncertainty is reduced to inputs L(a∗ − a) and ȧ acting
on this ISS closed loop system. This, in turn, provides a separation between the robust
stability and robust performance control problems.

∙ The modified adaptation law is a slightly more general version of the leakage modifica-
tion, also known as fixed-sigma, (6), where L = σ Γ, where σ > 0 is a scalar and the vector
a∗(t) above is usually not included or is a constant. This is a robust adaptive control
method that has been less popular than projection and switching-sigma modifications
due to its inability to achieve zero steady-state tracking when parameters are constant
and disturbances vanish. However, this approach yields stronger stability and perfor-
mance robustness for time varying switching systems for which the constant parameter
case is irrelevant.

∙ Plant parameter switching no longer affects internal dynamics and stability but enters
as a step change in input L(a∗ − a) and an impulse in input ȧ at the switching instant.
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Assumption 3 a ∈ �a is uniformly bounded and piecewise differentiable, where the set �a is an ad-
missible, but not necessarily known, set of parameters.

Note that by allowing piecewise changes in a the parametrization allows structural changes
in the system if we overparametrize such that all possible structural terms are included. Then
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backstepping designs, ã = â − a is parameter estimation error, and d is the disturbance.
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eT
c P fe + ãTΓ(t)−1 fa ≤ −eT

c Cec (5)
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o ,γ−1
ρ ∣b(t)∣)> 0 is an equivalent
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Assumption 4 b(t) is an unknown scalar function such that b(t) ∕= 0 ∀t, and sign of b(t) is known
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adaptation law, also known as fixed-sigma, uses Lo = σ Γo, where σ > 0 is a scalar and the
vector a∗(t) above is usually not included or is a constant. In fact, the key contribution from
the generalization presented here is not in the algebraic difference relative to leakage adaptive
laws (6) but rather in how the algorithm is utilized and proven to achieve new properties for
control of rapidly varying and switching systems. In particular, internal exponential and ISS
stability of the closed loop system using this leakage-type adaptive controller, without need
for persistence of excitation as required in (6), is shown and used to guarantee stability of the
state xc = [eT

c , ãT ]T , see Theorem 1 below.

Theorem 1 If there exits matrices P,Γo,γρ,C > 0 such that (5) is satisfied for ȧ = d = 0 with
Γ(t)−1 = diag(Γ−1

o ,γ−1
ρ ∣b(t)∣) > 0 and Assumption 2.4 is satisfied then the system given by

Equation (7) with d, ȧ ∕= 0 and diagonal L > 0 is :
(i) Uniformly internally exponentially stable and ISS stable.
(ii) If Assumptions (2.1-2.3) are satisfied and a∗(t) is chosen as a piecewise continuous bounded vector
then state xc = [eT

c , ãT ]T is bounded with

∥ec(t)∥ ≤ c1∥xc(to)∥e−α(t−to) + c2

∫ t

to

eα(τ−t)∥v(τ)∥dτ

where c1, c2 are constants, α = λ̄(diag(P−1C, L)), and v = [P1/2d,Γ−1/2(L(a∗ − a)− ȧ)]T.

The proof of this result is found in Appendix A.

2.3 Remarks
This section presents some remarks summarizing the implications of this result.

∙ The effect of plant variation and uncertainty is reduced to inputs L(a∗ − a) and ȧ acting
on this ISS closed loop system. This, in turn, provides a separation between the robust
stability and robust performance control problems.

∙ The modified adaptation law is a slightly more general version of the leakage modifica-
tion, also known as fixed-sigma, (6), where L = σ Γ, where σ > 0 is a scalar and the vector
a∗(t) above is usually not included or is a constant. This is a robust adaptive control
method that has been less popular than projection and switching-sigma modifications
due to its inability to achieve zero steady-state tracking when parameters are constant
and disturbances vanish. However, this approach yields stronger stability and perfor-
mance robustness for time varying switching systems for which the constant parameter
case is irrelevant.

∙ Plant parameter switching no longer affects internal dynamics and stability but enters
as a step change in input L(a∗ − a) and an impulse in input ȧ at the switching instant.
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∙ Controller switching of a∗ does not affect internal dynamics but enters as a step change
in input L(a∗ − a), which is a very powerful feature that can be used to utilize available
information about the system.

∙ Allowed arbitrary time variation and switching in the parameter vector a are for a plant
within the admissible set of parameters Sa. This set has not been defined here and will
be defined later via design assumptions for the classes of systems of interest.

∙ The authors believe that the use of this robust adaptive controller is useful for switched
systems even in the switched linear uncertainty free plant case, where stability with
switched linear feedback is difficult to guarantee based on currently available tools
(switching between stable LTI closed loop subsystems does not preserve stability). In
this case, knowledge of the switching plant parameter vector a(t) can be used in a ∗ (t).

3. Performance of the Control System

In this section, the tracking performance of the obtained control system is discussed.

3.1 Dynamic Response
Exponential stability allows for shaping the transient response, e.g. settling time, and fre-
quency response of the system to low/high frequency dynamics and inputs by adjusting the
decay rate α, see Theorem 1. This is to be done independent of the parametric uncertainty
a∗ − a, which is contrasted to LTI feedback where closed loop poles change with parametric
uncertainty. Thus the response to step and impulse inputs is as we expect for such an exponen-
tially stable system. However, in this case such inputs will not arise from only disturbances
but also from parameters and their variation. In particular, switches in parameters a(t) yields
step changes in a and impulses in ȧ(t). Furthermore, the system display the frequency re-
sponse characteristics such as in-bandwidth input, disturbances and parametric uncertainty
and variations, rejection and more importantly attenuation of high frequency inputs due to
roll-off.

3.2 Improving Tracking Error
Since stability and dynamic response of the system to different inputs and uncertainties have
been established independent of uncertainty, we are now left with optimizing the control pa-
rameters and gains a∗, L, Γ, P, and C for minimal tracking error. Different methods for im-
proving tracking error are described below with reference to the bound in Theorem 1:

1. Increasing the system input-output gain α = λ(diag(P−1C, L)), which as discussed earlier,
acts on the overall input uncertainty v. This attenuation, however, increases the sys-
tem bandwidth, which suggests its use primarily for low/high bandwidth disturbances
along the line of frequency response analysis of last section.

2. Increasing adaptation gain Γ, which has the effect of attenuating parametric uncertainty
and variation independent of system bandwidth (Recall that α is independent of Γ from
Theorem 1). This is the case since the size of the input v is reduced by reducing the
component Γ−1/2(L(a∗ − a)− ȧ). Note that a very large Γ has the effect of amplifying
measurement noise, which can be seen from the adaptation law.

3. Using a small gain Γ−1/2L, which is an agreement with increasing adaptation gain matrix
Γ mentioned above. However, this differs by the fact that this can be also achieved
by simply reducing the size of L. Furthermore, using Γ−1/2L is effective mainly for

parametric uncertainty since the input v contains Γ−1/2(L(a∗ − a)− ȧ), which suggests
a small Γ−1/2L does not necessarily attenuate ȧ unless Γ−1/2 is also small. This is the
case since this condition implies having approximate integral action in the adaptation law
of Equation (7), i.e., approaching integral action in the standard gradient adaptation
law.

4. Adjusting and updating parameter estimate a∗ , which can be any piecewise continuous
bounded function. This allows for reducing the effect of parametric uncertainty
through reducing size of input a∗ − a independent of system bandwidth and control
gains. In this regard, many of the useful and interesting ideas to monitor, select, and
switch between different candidate controllers via multiple models such as those in
(1; 16; 7; 26) can be used with switching between a∗i values playing the role of the ith can-
didate controller. The difference is that this is to be done without frozen-time instability
or switched system instability concerns (verifying dwell time or common Lyapunov
function conditions) as a∗(t) is just an input to the closed loop system. Similarly, gain
scheduling and Linear Parameter Varying (LPV) control (12; 20) can be applied with
a∗ playing the role of the scheduled parameter vector to be varied, again with no con-
cerns with instability and transient behavior since a∗ − a enter as an input to the system.

3.3 Remarks
∙ Exponential stability allows for shaping the transient response, e.g. settling time, and

frequency response of the system to low/high frequency dynamics and inputs by ad-
justing the decay rate α, see Theorem 1. This is to be done independent of the parametric
uncertainty a∗ − a, which is contrasted to LTI feedback where closed loop poles change
with parametric uncertainty.

∙ The attenuation of uncertainty by high input-output system gain in this scheme differs
from robust control by the fact that ISS stability, the pre-requisite to such attenuation, is
never lost due to large parametric uncertainty a∗ − a. This is the case since it no longer
enters as a function of the plant’s state but rather as an input L(a∗ − a).

∙ In switching between different a∗ values many of the useful and interesting ideas to
monitor, select, and switch between different candidate controllers via multiple models
such as those in (1; 16) can be used with a∗i values playing the role of the ith candi-
date controller. The difference is that this is to be done without frozen-time instability
or switched system instability concerns (verifying dwell time or common Lyapunov
function conditions) as a∗ is just an input to the closed loop system. Similarly, gain
scheduling and Linear Parameter Varying (LPV) control (12; 20) can be applied with a∗

playing the role of the scheduled parameter vector to be varied, again with no concerns
with instability and transient behavior since a∗ − a enter as an input to the system.

4. Example Simulation

Consider the following unstable 2nd order plant of relative degree 1 with a 2-mode periodic
switching:

ẋ1 = a1 x3
1 + x2 + (1 + x2

1)b1 u + d

ẋ2 = a2 x1 + (1 + x2
1)b2 u

y = x1 + n
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∙ Controller switching of a∗ does not affect internal dynamics but enters as a step change
in input L(a∗ − a), which is a very powerful feature that can be used to utilize available
information about the system.

∙ Allowed arbitrary time variation and switching in the parameter vector a are for a plant
within the admissible set of parameters Sa. This set has not been defined here and will
be defined later via design assumptions for the classes of systems of interest.

∙ The authors believe that the use of this robust adaptive controller is useful for switched
systems even in the switched linear uncertainty free plant case, where stability with
switched linear feedback is difficult to guarantee based on currently available tools
(switching between stable LTI closed loop subsystems does not preserve stability). In
this case, knowledge of the switching plant parameter vector a(t) can be used in a ∗ (t).

3. Performance of the Control System

In this section, the tracking performance of the obtained control system is discussed.

3.1 Dynamic Response
Exponential stability allows for shaping the transient response, e.g. settling time, and fre-
quency response of the system to low/high frequency dynamics and inputs by adjusting the
decay rate α, see Theorem 1. This is to be done independent of the parametric uncertainty
a∗ − a, which is contrasted to LTI feedback where closed loop poles change with parametric
uncertainty. Thus the response to step and impulse inputs is as we expect for such an exponen-
tially stable system. However, in this case such inputs will not arise from only disturbances
but also from parameters and their variation. In particular, switches in parameters a(t) yields
step changes in a and impulses in ȧ(t). Furthermore, the system display the frequency re-
sponse characteristics such as in-bandwidth input, disturbances and parametric uncertainty
and variations, rejection and more importantly attenuation of high frequency inputs due to
roll-off.

3.2 Improving Tracking Error
Since stability and dynamic response of the system to different inputs and uncertainties have
been established independent of uncertainty, we are now left with optimizing the control pa-
rameters and gains a∗, L, Γ, P, and C for minimal tracking error. Different methods for im-
proving tracking error are described below with reference to the bound in Theorem 1:

1. Increasing the system input-output gain α = λ(diag(P−1C, L)), which as discussed earlier,
acts on the overall input uncertainty v. This attenuation, however, increases the sys-
tem bandwidth, which suggests its use primarily for low/high bandwidth disturbances
along the line of frequency response analysis of last section.

2. Increasing adaptation gain Γ, which has the effect of attenuating parametric uncertainty
and variation independent of system bandwidth (Recall that α is independent of Γ from
Theorem 1). This is the case since the size of the input v is reduced by reducing the
component Γ−1/2(L(a∗ − a)− ȧ). Note that a very large Γ has the effect of amplifying
measurement noise, which can be seen from the adaptation law.

3. Using a small gain Γ−1/2L, which is an agreement with increasing adaptation gain matrix
Γ mentioned above. However, this differs by the fact that this can be also achieved
by simply reducing the size of L. Furthermore, using Γ−1/2L is effective mainly for

parametric uncertainty since the input v contains Γ−1/2(L(a∗ − a)− ȧ), which suggests
a small Γ−1/2L does not necessarily attenuate ȧ unless Γ−1/2 is also small. This is the
case since this condition implies having approximate integral action in the adaptation law
of Equation (7), i.e., approaching integral action in the standard gradient adaptation
law.

4. Adjusting and updating parameter estimate a∗ , which can be any piecewise continuous
bounded function. This allows for reducing the effect of parametric uncertainty
through reducing size of input a∗ − a independent of system bandwidth and control
gains. In this regard, many of the useful and interesting ideas to monitor, select, and
switch between different candidate controllers via multiple models such as those in
(1; 16; 7; 26) can be used with switching between a∗i values playing the role of the ith can-
didate controller. The difference is that this is to be done without frozen-time instability
or switched system instability concerns (verifying dwell time or common Lyapunov
function conditions) as a∗(t) is just an input to the closed loop system. Similarly, gain
scheduling and Linear Parameter Varying (LPV) control (12; 20) can be applied with
a∗ playing the role of the scheduled parameter vector to be varied, again with no con-
cerns with instability and transient behavior since a∗ − a enter as an input to the system.

3.3 Remarks
∙ Exponential stability allows for shaping the transient response, e.g. settling time, and

frequency response of the system to low/high frequency dynamics and inputs by ad-
justing the decay rate α, see Theorem 1. This is to be done independent of the parametric
uncertainty a∗ − a, which is contrasted to LTI feedback where closed loop poles change
with parametric uncertainty.

∙ The attenuation of uncertainty by high input-output system gain in this scheme differs
from robust control by the fact that ISS stability, the pre-requisite to such attenuation, is
never lost due to large parametric uncertainty a∗ − a. This is the case since it no longer
enters as a function of the plant’s state but rather as an input L(a∗ − a).

∙ In switching between different a∗ values many of the useful and interesting ideas to
monitor, select, and switch between different candidate controllers via multiple models
such as those in (1; 16) can be used with a∗i values playing the role of the ith candi-
date controller. The difference is that this is to be done without frozen-time instability
or switched system instability concerns (verifying dwell time or common Lyapunov
function conditions) as a∗ is just an input to the closed loop system. Similarly, gain
scheduling and Linear Parameter Varying (LPV) control (12; 20) can be applied with a∗

playing the role of the scheduled parameter vector to be varied, again with no concerns
with instability and transient behavior since a∗ − a enter as an input to the system.

4. Example Simulation

Consider the following unstable 2nd order plant of relative degree 1 with a 2-mode periodic
switching:

ẋ1 = a1 x3
1 + x2 + (1 + x2

1)b1 u + d

ẋ2 = a2 x1 + (1 + x2
1)b2 u

y = x1 + n
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where u, d, and n are control signal, disturbance, and measurement noise respectively.
Whereas, the plant parameters are given by:

a1 = 3 + 30 square(2πω t) , a2 = −2 − 20 square(2πω t)
b1 = 5 + square(2πω t) ,b2 = 20 + 10 square(2πω t)

where square denotes the unity magnitude square wave function and ω is the plant switching
frequency is Hz.

4.1 Control System Evaluation
In this section, an adaptive controller, which is based on the design procedure of Section 4.
Let us choose the nominal gains C = 100 (feedback gain), adaptation filter gain L = I, where
I is the identity matrix, then we have from Theorem 1 that the decay rate α = 1 rad/sec.
This should yield a settling time of at most 4 seconds for the closed loop system. Also the
nominal value of the adaptation gain Γ = 100I will be used. Whereas, a∗ is chosen to be a
constant vector aave taking the average values of the parameters a1, a2,b1,b2, i.e., when square
functions are set to zero.

Fig. 1. Tracking error for different plant switching frequencies for developed adaptive con-
troller.

Figure 1 shows the response of the modified adaptive controller for the output of the plant
tracking a sinusoidal reference of amplitude 2 and frequency 0.3 rad/sec; the disturbance is
set to zero for this case. The response follows the predicted theoretical behavior. The system
responds to the corresponding impulse change in ȧ and step change in a due to switching in
plant parameter vector a with the error settling after exponentially decaying transient accord-
ing to the system decay rate α. Whereas, by increasing the plant switching frequency, the same
trend follows with no concern of instability. In fact, as the suggested by the bound in Theorem
2, plant parametric uncertainty and variation are inputs to the closed loop system. Therefore,
increasing the frequency of this input, 6 rads/sec in this case, relative system bandwidth, 1
rads/ sec, will lead to attenuation of this input due to system roll-off as in linear systems. This
explains why the tracking error is smaller for the higher switching frequency case.
Figure 2 shows the effect of different choices of the additional parameter estimate a∗ for the
nominal case of Figure 1. The figure shows that the average tracking error is larger when a∗ =

10 aave and a∗ = 100 aave, since it corresponds to a larger size of the input a∗ − a, as predicted
by the bound of Theorem 2. The third case in Figure 2 shows the effect of switching the choice
of a∗ starting from a a∗ = 100 aave to a∗ = 10 aave at t = 8 seconds. Again, the response is that
due to step changes in input a∗ − a with the transition between these two response takes place
within the estimated settling time of 4 seconds based on a designed for decay rate of α = 1
rads/ sec. This is a key capability that can be utilized in practice to perform robust and stable
gain scheduling and online controller adjustments.

Fig. 2. Effect of parameter estimate a∗ on tracking error for developed adaptive controller.

Fig. 3. Effect of feedback gain on tracking error for developed adaptive controller.

Next, Figures 3 and 4 will include the addition of a sinusoidal disturbance d = 50sin(π t)
to the nominal case discussed above for switching frequency ω = 0.1 Hz. Figure 3 displays
the response of the nominal case of Figure 1 with the addition of a sinusoidal disturbance
d = 50sin(π t), which introduces a clear sinusoidal content to the tracking error. Whereas,
increasing feedback gain, which corresponds to matrix C in Theorem 1, significantly reduces
the tracking error due to both plant switching (jumps and other steady errors) as well as the
disturbance-induced error. This is consistent with the discussion in Section IV.B in that in-
creasing system bandwidth α (via feedback gain) attenuates total input( disturbance an para-
metric uncertainties and variations) as well as speeds up the system bandwidth.



Robust Adaptive Control of Switched Systems 43
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tracking a sinusoidal reference of amplitude 2 and frequency 0.3 rad/sec; the disturbance is
set to zero for this case. The response follows the predicted theoretical behavior. The system
responds to the corresponding impulse change in ȧ and step change in a due to switching in
plant parameter vector a with the error settling after exponentially decaying transient accord-
ing to the system decay rate α. Whereas, by increasing the plant switching frequency, the same
trend follows with no concern of instability. In fact, as the suggested by the bound in Theorem
2, plant parametric uncertainty and variation are inputs to the closed loop system. Therefore,
increasing the frequency of this input, 6 rads/sec in this case, relative system bandwidth, 1
rads/ sec, will lead to attenuation of this input due to system roll-off as in linear systems. This
explains why the tracking error is smaller for the higher switching frequency case.
Figure 2 shows the effect of different choices of the additional parameter estimate a∗ for the
nominal case of Figure 1. The figure shows that the average tracking error is larger when a∗ =

10 aave and a∗ = 100 aave, since it corresponds to a larger size of the input a∗ − a, as predicted
by the bound of Theorem 2. The third case in Figure 2 shows the effect of switching the choice
of a∗ starting from a a∗ = 100 aave to a∗ = 10 aave at t = 8 seconds. Again, the response is that
due to step changes in input a∗ − a with the transition between these two response takes place
within the estimated settling time of 4 seconds based on a designed for decay rate of α = 1
rads/ sec. This is a key capability that can be utilized in practice to perform robust and stable
gain scheduling and online controller adjustments.

Fig. 2. Effect of parameter estimate a∗ on tracking error for developed adaptive controller.

Fig. 3. Effect of feedback gain on tracking error for developed adaptive controller.

Next, Figures 3 and 4 will include the addition of a sinusoidal disturbance d = 50sin(π t)
to the nominal case discussed above for switching frequency ω = 0.1 Hz. Figure 3 displays
the response of the nominal case of Figure 1 with the addition of a sinusoidal disturbance
d = 50sin(π t), which introduces a clear sinusoidal content to the tracking error. Whereas,
increasing feedback gain, which corresponds to matrix C in Theorem 1, significantly reduces
the tracking error due to both plant switching (jumps and other steady errors) as well as the
disturbance-induced error. This is consistent with the discussion in Section IV.B in that in-
creasing system bandwidth α (via feedback gain) attenuates total input( disturbance an para-
metric uncertainties and variations) as well as speeds up the system bandwidth.
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Fig. 4. Effect of adaptation gain Γ on tracking error for developed adaptive controller.

Whereas, Figure 4 considers the same situation in Figure 3 but with increasing adaptation
gain instead of feedback gain. Again similar performance improvements are achieved along
the lines of the bound in Theorem 1 yet without increasing system bandwidth.
Figures 2-4 show that error can be reduced by adjusting a∗, increasing feedback and adap-
tation gains, with different levels of effectiveness relative to disturbances, parametric uncer-
tainty, and variation in accordance with the discussion in Section 3. The important message
from this case study is not only that the developed control methodology can handel systems
with large and rapid switching dynamics but also that this approach yields systematic and
practical means to improve performance that follow the developed theory.

4.2 Comparison with Other Techniques
Finally, let us compare the system’s response with the developed adaptive controller to other
adaptive control techniques. We consider the same system of Section 5.1 with switching fre-
quency ω = 1 Hz case. The system is required to follow a constant reference of amplitude
2. First consider a non-adaptive backstepping controller, where the parameter estimate â, in
the developed control scheme of is replaced with a fixed value â = aave. Figure 5 shows that
the non-adaptive controller yields an unstable closed loop despite using the same assumed
value of plant parameter vector, which has been used by the modified adaptive controller
with a∗ = aave.
Next, Figure 6 shows the response of the parameter estimates â, when the equivalent standard
adaptive controller, Equation (3), is used. This corresponds to setting L = 0 in the modified
adaptive controller of Equation (6). In this case, some of the parameter estimates â grow
unbounded, which could yield an unstable system in practical implementation. This is a
known issue with standard adaptive control in the presence of parameter variations or even
disturbances, which is usually referred to as parameter drift (6). In contrast, the modified
adaptive controller for the same situation maintains bounded parameter estimates due to ISS
stability of the closed loop, see Figure 7.
The poor robustness of standard adaptive controllers with respect to time varying parameters
and disturbances has lead to modifying the adaptation law by robust adaptation laws such as
deadzone, projection, and leakage modifications (6). Although there have not been any results
reporting guaranteed stability and performance characteristics for rapidly varying switching

Fig. 5. Tracking error for non-adaptive backstepping controller with â = aave.

Fig. 6. Parameter estimates â for standard adaptive controller with L = 0.

systems using these techniques, we will compare the leakage-based modification developed
in this chapter with deadzone and projection modifications.
A deadzone modification to the standard adaptation law of Equation (3) can be given by:

˙̂a =

{
fa(xm, â,yr, t) if ∥e∥ > ε

0 otherwise

This simply means to turn off the adaptation when the tracking error is less than some ac-
ceptable threshold ε. Figure 8 compares the modified adaptive controller with a∗ = aave to an
equivalent deadzone adaptive controller with the same adaptation gain Γ = 10000I, where I
is the identity matrix, and a deadzone threshold of ε = 0.3. In this case, the modified adaptive
controller outperforms the deadzone adaptive controller in the tracking error. Furthermore,
when attempting to reduce the size of the tracking error threshold for the deadzone, ε, to al-
low for improvement in tracking error, the parameter estimates grew unboundedly as in the
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Fig. 4. Effect of adaptation gain Γ on tracking error for developed adaptive controller.

Whereas, Figure 4 considers the same situation in Figure 3 but with increasing adaptation
gain instead of feedback gain. Again similar performance improvements are achieved along
the lines of the bound in Theorem 1 yet without increasing system bandwidth.
Figures 2-4 show that error can be reduced by adjusting a∗, increasing feedback and adap-
tation gains, with different levels of effectiveness relative to disturbances, parametric uncer-
tainty, and variation in accordance with the discussion in Section 3. The important message
from this case study is not only that the developed control methodology can handel systems
with large and rapid switching dynamics but also that this approach yields systematic and
practical means to improve performance that follow the developed theory.

4.2 Comparison with Other Techniques
Finally, let us compare the system’s response with the developed adaptive controller to other
adaptive control techniques. We consider the same system of Section 5.1 with switching fre-
quency ω = 1 Hz case. The system is required to follow a constant reference of amplitude
2. First consider a non-adaptive backstepping controller, where the parameter estimate â, in
the developed control scheme of is replaced with a fixed value â = aave. Figure 5 shows that
the non-adaptive controller yields an unstable closed loop despite using the same assumed
value of plant parameter vector, which has been used by the modified adaptive controller
with a∗ = aave.
Next, Figure 6 shows the response of the parameter estimates â, when the equivalent standard
adaptive controller, Equation (3), is used. This corresponds to setting L = 0 in the modified
adaptive controller of Equation (6). In this case, some of the parameter estimates â grow
unbounded, which could yield an unstable system in practical implementation. This is a
known issue with standard adaptive control in the presence of parameter variations or even
disturbances, which is usually referred to as parameter drift (6). In contrast, the modified
adaptive controller for the same situation maintains bounded parameter estimates due to ISS
stability of the closed loop, see Figure 7.
The poor robustness of standard adaptive controllers with respect to time varying parameters
and disturbances has lead to modifying the adaptation law by robust adaptation laws such as
deadzone, projection, and leakage modifications (6). Although there have not been any results
reporting guaranteed stability and performance characteristics for rapidly varying switching

Fig. 5. Tracking error for non-adaptive backstepping controller with â = aave.

Fig. 6. Parameter estimates â for standard adaptive controller with L = 0.

systems using these techniques, we will compare the leakage-based modification developed
in this chapter with deadzone and projection modifications.
A deadzone modification to the standard adaptation law of Equation (3) can be given by:

˙̂a =

{
fa(xm, â,yr, t) if ∥e∥ > ε

0 otherwise

This simply means to turn off the adaptation when the tracking error is less than some ac-
ceptable threshold ε. Figure 8 compares the modified adaptive controller with a∗ = aave to an
equivalent deadzone adaptive controller with the same adaptation gain Γ = 10000I, where I
is the identity matrix, and a deadzone threshold of ε = 0.3. In this case, the modified adaptive
controller outperforms the deadzone adaptive controller in the tracking error. Furthermore,
when attempting to reduce the size of the tracking error threshold for the deadzone, ε, to al-
low for improvement in tracking error, the parameter estimates grew unboundedly as in the
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Fig. 7. Parameter estimates â for developed adaptive controller.

Fig. 8. Tracking error comparison for developed adaptive controller and a deadzone adaptive
controller.

standard adaptive controller case of Figure 6. This is expected as the deadzone adaptive con-
troller approaches that of a standard adaptive controller as ε → 0. Another limitation to the
deadzone controller is the lack of systematic dependence on control parameters such as the
adaptation gain Γ unlike the modified adaptive controller. Figure 9 shows how increasing the
adaptation gain from Γ = 100I to Γ = 10000I does not necessarily improve tracking but rather
yields reduction and increase in tracking at different times and of different signs. This is con-
trasted with the modified adaptive controller when tested under the same conditions, Figure
10, where a clear reduction in tracking error is observed with increasing Γ, in accordance with
the scaling relationship in Section 3.
Next, we consider a parameter projection modification to the standard adaptive controller of

Fig. 9. Effect of adaptation gain Γ on tracking error for deadzone adaptive controller.

Equation (3). The projection modification (6) used here is given by:

˙̂a =

{
fa if ∥â∥ ≤ M or âT fa ≤ 0

fa − â âT

∥â∥2

(
∥â∥2−M2

M2

)
fa otherwise

Which uses an assumed bound on parameters ∥a∥ ≤ M. This assumption is critical to projec-
tion algorithms. Figure 11 shows the tracking error growing unbounded when a projection
algorithm was implemented with a tight bound M = 1. In this case, the assumed bound on
parameters was too tight as soon as the system switched to a different mode leading to insta-
bility. This is in contrast to the developed adaptive controller, which does not require such
information to guarantee stability. This is the case as the assumed parameter vector a∗ only
affects the size of tracking error for a given choice of control gains.
Nevertheless, it was possible to obtain a choice for the projection bound, M = 10, where the
system remained stable. Figure 12 compares the tracking error for this projection adaptive
controller and the developed adaptive controller with a∗ = aave for the same adaptation gain.
Again, the developed adaptive controller achieved smaller tracking error. As was the case
with deadzone controller, the projection controller does not display the systematic depen-
dence on the adaptation gain Γ unlike the proposed adaptive controller, see Figure 13. This
is the case since both projection and deadzone modification do not achieve a clear bound due
to ISS stability as that in Theorem 1. In fact, most results using such techniques to deal with
disturbances or parameter variations only conclude boundedness. In this case, such a conclu-
sion is of very little practical importance if the error can not be reduced to an acceptable level
by increasing the adaptation gain or using a better nominal estimate of the plant parameters
as with using a∗ in the proposed adaptation law, see Figure 2.

5. Conclusions

A methodology for robust adaptive control design for a class switched nonlinear systems is
presented. Under extensions of typical adaptive control assumptions, a leakage-type adap-
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Fig. 10. Effect of adaptation gain Γ on tracking error for developed adaptive controller.

Fig. 11. Tracking error for projection adaptive controller with small parameter projection
bound M = 1.

tive control scheme guarantees exponential and ISS stability with piecewise differentiable
bounded plant parameters and piecewise continuous bounded disturbances without requir-
ing a priori knowledge on such parameters. The effect of plant variation and switching
is reduced to piecewise continuous and impulsive inputs acting on this ISS stable closed
loop system. This yields a separation between robust stability and robust performance and
clear guidelines for performance optimization via ISS bounds. The results are demonstrated
through example simulations, which follow the developed theory and demonstrate superior
robustness of stability and performance relative to non-adaptive and other adaptive methods
such as projection and deadzone adaptive controllers. The authors believe that the use of
these type of robust adaptive controllers is useful for switched systems even in the switched
linear uncertainty free plant case, where stability with switched linear feedback is difficult to
guarantee based on currently available tools.

Fig. 12. Tracking error comparison for developed adaptive controller and a projection adap-
tive controller with large parameter projection bound M = 10.

Fig. 13. Effect of adaptation gain Γ on tracking error for projection adaptive controller with
large parameter projection bound M = 10.
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1. Introduction  

In the last decade, switched systems have gained much attention since a large class of 
practical systems can be modeled as switched systems (see e.g., (Dayawansa & Martin, 
1999)) and there exist systems that cannot be asymptotically stabilized by a single 
continuous feedback control law (see e.g., (Brockett, 1983)). For stability analysis of switched 
systems, many interesting results have been proposed in the literature, see e.g., (Narendra & 
Balakrishnan, 1994; Johansson & Rantzer, 1998; Branicky, 1998; Ye et al., 1998; Dayawansa & 
Martin, 1999; Liberzon et al., 1999; Skafidas et al., 1999; Mancilla-Aguilar, 2000; and 
Chatterjee & Liberzon, 2007). Another topic is the derivation of stabilizing switching rules 
for switched systems, see et al., (Peleties & DeCarlo, 1991; Liberzon & Morse, 1999; and 
Pettersson, 2003). For feedback controller synthesis of switched control systems (with input 
signals), most of the proposed results consider the linear subsystems case, see e.g., (Daafouz 
et al., 2002; Sun & Ge, 2003; Petterson, 2004; Hespanha & Morse, 2004; and Seatzu et al., 
2006). Only a few results have been proposed for feedback controller synthesis of switched 
nonlinear control systems, see e.g., (Sun & Zhao, 2001; El-Farra et al., 2005; Wu, 2008; and 
Wu, 2009). In (El-Farra et al., 2005), an integrated synthesis of feedback controllers together 
with switching laws has been proposed. In (Sun & Zhao, 2001), a common control Lyapunov 
function (CCLF) approach has been introduced also for constructing feedback control laws 
together with switching signals for switched nonlinear control systems. The concept of 
CCLF is motivated by the control Lyapunov function approach (see, e.g., (Artstein, 1983) and 
(Sontag, 1983 and 1989)) for designing stabilizing feedback laws for (non-switched) 
nonlinear systems. In (Wu, 2008), for switched nonlinear control systems under arbitrarily 
switching, conditions for the existence of CCLFs has been derived and a globally uniformly 
asymptotically stabilizing feedback law has been proposed. However, no systematical 
approaches have been provided for constructing CCLFs. Moreover, the obtained feedback 
law is complicated. In (Wu, 2009), for switched nonlinear control systems, which arbitrarily 
switching between a set of subsystems in strict feedback form, the backstepping approach 
(see e.g., (Krstic et al., 1995) and (Sepulchre et al., 1997)) has been employed to construct 
CCLFs, and a simpler stabilizing feedback law has been proposed.  
However, till now, few results have been reported in the literature about stabilizing 
feedback controllers design for state-dependent switched nonlinear control systems. The 
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purpose of this chapter is to give a constructive approach for this problem. The state space is 
partitioned, by a set of switching surfaces, into several operation regions. In each of these 
regions, a nonlinear dynamical system (in feedback linearizable form) is given. Whenever 
the state trajectory passes a switching surface, a new dynamical model dominates the 
system’s behavior. That is, the switching signal is state-dependent and predetermined. For 
the stability analysis of state-dependent switched systems, a common Lyapunov function for 
all subsystems is easier to develop but too conservative, see e.g., (Liberzon, 2003). It is 
known that the multiple Lyapunov function approach is a less conservative method. Based on 
the concepts of multiple Lyapunov functions and control Lyapunov functions, this chapter 
introduces a switched control Lyapunov function (SCLF) approach for designing stabilizing 
feedback controllers for state-dependent switched nonlinear control systems. It should be 
emphasized that the derivation of CCLFs or SCLFs for switched nonlinear control systems is 
an open problem unless the systems are in some particular form. Therefore, in this chapter 
we restrict our attention to switched nonlinear systems in feedback linearizable form for the 
reason that, in this case, SCLFs can be chosen as piecewise quadratic form and can be 
obtained by solving bilinear matrix inequalities (BMIs) with equality constraints. Although 
the considered systems are in feedback linearizable form, we do not use the feedback 
linearization technique in the design procedure. We show that the considered stabilization 
problem for switched nonlinear control systems can be solved by directly solving a matrix 
problem. We will show that an explicit stabilizing switched feedback law, based on the 
Sontag’s formula (see (Sontag, 1989)), can be easily derived once a SCLF has been obtained.  

NOTATIONS: That BA \  is the set of all elements which belong to set A but not belong to 
set B; BA  is the union of sets A and B; BA  is the intersection of sets A and B; clA is the 
closure of set A; A  is the boundary of set A; IntA  is the interior of set A (i.e., 

AclAIntA \ ); 0P  ( 0P ) means that the matrix P is positive (negative) definite; 0P  
( 0P ) means that the matrix P is positive (negative) semidefinite;  denotes an empty set; 
  means “for all”. 

 
2. Problem Formulation and Preliminaries 

The intension of this section is to present some preliminaries and to explicitly formulate the 
problem to be solved.  

 
2.1 Switched nonlinear control systems 
In this chapter we are focused on switched nonlinear systems with input signals: 

uxgBxfCxAx xxxxx )()( )()()()()(   , },...,{)( qx 1    (1) 
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Define the index set },...,{ qIS 1 . Associated with the considered switched control system 
(1), a family of subsystems is defined: 

uxgBxfCxAx iiiii )()(  , SIi .             (3) 

By (2), it can be seen that the subsystems in (3) are feedback linearizable (see Khalil, 1996).  

 
2.2 State space partition 
Specially in this chapter, the state space is partitioned into q regions i , i=1,…,q, given by 
quadratic forms: 

 0n T
i ix R x Q x    , i=1,…,q,         (4) 

for some symmetric matrices nn
i RQ  , i=1,…,q. Let  ji IntInt  if ji  , and 

n
q R 1 . That is, the overlap between two adjacent regions is the boundary 

between these two regions. The i-th subsystem of (3) can be active only in part of the state 
space, specified by region i . Define the adjacent index set  

  }{\},{ 0jiSSA IIjiI .            (5) 

That is, if AIji },{ , then i  and j  are adjacent regions and thus a switching region ijS  is 
defined:  

 0 xQQxRxS ji
Tn

ij )(       (6) 

In fact, jiijS  . Switches of the i-th subsystem into the j-th subsystem (or, switches of 
the j-th subsystem into the i-th subsystem) can occur only in the region ijS . Note that in 
(Pettersson, 2004), for switched linear systems, the partition of state space is determined by 
the designer. That is, iQ , i=1,…,q, are parameters to be determined. But in this chapter, we 
consider the case that they are predetermined. 

 
2.3 Switching rule 

In this chapter, we consider the case that the switching signal is state-dependent and is 
given by: 

itx ))(( , if iInttx )( , or itx )(   and itx  ))(( .  (7) 

By (7), the switching signal )(x  changes it value only if the state trajectory leaves one of 
the regions i , i=1,…,q. It holds constant value if the state trajectory keeps within a 
particular region (including its boundary). 

 
2.4 Problem formulation 
The goal of this chapter is to construct a state feedback law 
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Specially in this chapter, the state space is partitioned into q regions i , i=1,…,q, given by 
quadratic forms: 

 0n T
i ix R x Q x    , i=1,…,q,         (4) 

for some symmetric matrices nn
i RQ  , i=1,…,q. Let  ji IntInt  if ji  , and 

n
q R 1 . That is, the overlap between two adjacent regions is the boundary 

between these two regions. The i-th subsystem of (3) can be active only in part of the state 
space, specified by region i . Define the adjacent index set  

  }{\},{ 0jiSSA IIjiI .            (5) 

That is, if AIji },{ , then i  and j  are adjacent regions and thus a switching region ijS  is 
defined:  

 0 xQQxRxS ji
Tn

ij )(       (6) 

In fact, jiijS  . Switches of the i-th subsystem into the j-th subsystem (or, switches of 
the j-th subsystem into the i-th subsystem) can occur only in the region ijS . Note that in 
(Pettersson, 2004), for switched linear systems, the partition of state space is determined by 
the designer. That is, iQ , i=1,…,q, are parameters to be determined. But in this chapter, we 
consider the case that they are predetermined. 

 
2.3 Switching rule 

In this chapter, we consider the case that the switching signal is state-dependent and is 
given by: 

itx ))(( , if iInttx )( , or itx )(   and itx  ))(( .  (7) 

By (7), the switching signal )(x  changes it value only if the state trajectory leaves one of 
the regions i , i=1,…,q. It holds constant value if the state trajectory keeps within a 
particular region (including its boundary). 

 
2.4 Problem formulation 
The goal of this chapter is to construct a state feedback law 



Switched Systems54

 

)()( xhu x                   (8) 

to globally asymptotically stabilize the switched control system (1). That is, we want to find 
a feedback law (8) such that the closed-loop system 

)()()( )()()()()()( xhxgBxfCxAx xxxxxx    

     

(9) 

becomes globally asymptotically stable under the switching rule (7).  

 
2.5 Multiple Lyapunov functions 
As stated in (Liberzon, 2003), common Lyapunov function approach will be too conservative 
for stability analysis of state-dependent switched systems. The multiple Lyapunov function 
approach will be less conservative. Here we briefly review the concept of multiple Lyapunov 
functions.  
To analyze the stability of state-dependent switched system (9), for each SIi , we first find 
a Lyapunov-like function )(xVi , which vanishes at the origin and is positive for all 

}{\ 0ix  , for the i-th subsystem of (9). System (9) is stable if, for each SIi , the values of 
)(xVi  at every switching instants, when we enter (switch into) the i-th subsystem, form a 

monotonically decreasing sequence.  
 
However, using the multiple Lyapunov function approach in practically analyzing stability is 
difficult since, for verifying the monotonically decreasing property, one must have some 
information about the solutions of the switched systems (Liberzon, 2003). That is, one needs 
to know the values of suitable Lyapunov-like functions at switching times, which in general 
requires the knowledge of the state at these times. This is to be contrasted with the classical 
Lyapunov stability results, which do not require the knowledge of solutions, see (Liberzon, 
2003). To simply the analysis procedure, an additional assumption that the multiple Lyapunov 
function is continuous on the boundaries between regions (i.e., switching surfaces) can be 
introduced. This assumption is conservative but leads to a simpler condition for verifying 
stability.  

 
2.6 Switched control Lyapunov functions 
Multiple Lyapunov function approach can be used to determine the stability of switched 
systems without input signals. However, it cannot tell us how to find a stabilizing feedback 
law (8) for the switched control system (1). Here we introduce the switched control Lyapunov 
function (SCLF) for feedback controller synthesis.  
Definition 1: A switched function )()( )( xVxV x , which is differentiable in iInt , for all 

SIi , and continuous on ijS , for all AIji },{ , is a SCLF of (1) if,  
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0)(xV , }{\ 0nRx     (11) 
)(xV , as x     (12) 

 

and, along each possible nonzero solution of (1), a control signal u exists such that )(xV  
monotonically decreases.        ■ 

Similar to the statement about multiple Lyapunov function in the previous subsection, for 
simplifying the design procedure, we make the assumption that the SCLF is continuous 
everywhere. By Definition 1, if we can find a SCLF for the switched system (1), then for each 
solution of (1) we can derive a control signal u such that SCLF monotonically decreases. The 
next problems are how to derive SCLFs for (1) and how to develop stabilizing feedback 
controllers by the obtained SCLF. 

 
3. Stabilizing Controller Synthesis 

In this section we propose the main results, a sufficient condition for the existence of SCLFs 
for (1) and a stabilizing feedback law derived by the obtained SCLF.  
We first define the regional control Lyapunov functions (RCLFs) for the subsystems in (3), 
which will be used to construct SCLFs for (1).  
Definition 2: A differentiable function )(xVi  is a i -RCLF for the i-th subsystem of (3) if,  

00 )(iV         (13) 
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and 

  0





uxgBxfCxA
x

xV
iiiii

i

Ru m
)()(

)(
inf , }{\ 0ix    (16) 

        ■ 

Define 

 )(
)(

)( xfCxA
x

xV
xa iii

i
i 




                  (17) 

and  

             )(
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xb ii

i
i 


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By Definition 2, a differentiable function Vi(x), satisfying (13)-(15), is a i -RCLF for the i-th 
subsystem if 

}{\ 0ix  , 00  )()( xaxb ii .         (19) 

Notice that if we can find a i -RCLF, )(xVi , for the i-th subsystem, then for all  }{\ 0ix   
we can derive an u such that 0 uxbxa ii )()( .  
Now we recall the S-procedure and the Finsler’s lemma which will be used latter for 
deriving conditions for the existence of RCLFs. 
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By Definition 2, a differentiable function Vi(x), satisfying (13)-(15), is a i -RCLF for the i-th 
subsystem if 
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Notice that if we can find a i -RCLF, )(xVi , for the i-th subsystem, then for all  }{\ 0ix   
we can derive an u such that 0 uxbxa ii )()( .  
Now we recall the S-procedure and the Finsler’s lemma which will be used latter for 
deriving conditions for the existence of RCLFs. 
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Lemma 1 (S-procedure) (Boyd et al., 1994): Let nnRP   and nnRQ   be symmetry. Then 

0PxxT  for all 0x  satisfies 0QxxT  

if there exists a scalar 0  such that  

0 QP  .      ■ 

Lemma 2 (Finsler’s Lemma) (Boyd et al., 1994): Consider a symmetric matrix nnRP   and a 
matrix mnRN  , with rank(N)<n. The following statements are equivalent: 
  1) 0PxxT  0x  such that 0xN T  
  2) R  such that 0 TNNP   
  3) nmRL   such that 0 NLNLP TT .    ■ 

By the particular structure of the switched control system (1), RCLFs of the subsystems in (3) 
can be chosen as quadratic form and then can be obtained by solving bilinear matrix 
inequalities (BMIs). From Definition 2, a quadratic function xPxxV i

T
i )( , with 

nnT
ii RPP  , is a i -RCLF for the i-th subsystem of (3) if 

0xPx i
T  for all 0x  such that 0xQx i

T    (20) 

and 

  0


uxgBPxxfCxAPx iii
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iiii
T

Ru m
)()(inf , for all 0x  such that 0xQx i

T  (21) 

We have the following result.  

Theorem 1: There exists a quadratic i -RCLF for the i-th subsystem of (3) if there exist 

scalars 0i  and 0i , and matrices nm
i RL   and nnT

ii RPP   satisfy the following 
bilinear matrix inequalities: 

0 iii QP      (22) 

0 iiii
T
i

T
iiiiii

T
i LBPPBLQAPPA     (23) 

In this case, the quadratic function xPxxV i
T

i )(  is a i -RCLF for the i-th subsystem of (3). 
Proof: From (20), (22) and Lemma 1, it is clear that 0)(xVi  for all }{\ 0ix  . Notice that  
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For }{\ 0ix   such that 0)(xbi , we have )( T
ii BNxP   since )(xgi  is nonsingular. Then, 

)( T
ii CNxP   by (2) and therefore 0)(xfCPx iii

T . From (23), for }{\ 0ix   satisfying 
0)(xbi , we have 
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 xLBPPBLQx iiii
T
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T
iii
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 xQx i
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i  
 0  

This proves the result by noting (19).      ■ 

It should be noted that, by the conditions in Theorem 1, xPxxV i
T

i )(  is not a classical 
control Lyapunov function for the i-th subsystem. This is obvious since the solution iP  may 
not be positive definite. 
By solving (22) and (23) for all SIi , if all the subsystems in (3) have their RCLFs, 

PxxxV T
i )( , i=1,…,q, one might think that the switched function )()( xV x  is a SCLF for 

switched control system (1). However, this is not true since these RCLFs in general have 
different values on the switching surfaces. That is, )()( xV x  will be discontinuous on the 
switching surfaces. If we use )()( xV x  as a control Lyapunov function for (1), we can find 
control signal u such that )()( xV x  decreases between sequel switching times. However, 

)()( xV x  may increase at the switching instants (i.e., as the trajectories of (1) pass through 
the switching surfaces). In this case, the design of stabilizing feedback laws is difficult. To 
simply the design procedure, an additional continuity requirement is included for SCLFs. In 
the next theorem we introduce additional constraints in solving the matrix inequalities to 
guarantee the continuity of SCLFs on the switching surfaces. Moreover, a stabilizing 
feedback controller is given provided that a SCLF is obtained. 
Theorem 2: There exists a piecewise quadratic SCLF for the switched control system (1) if 
there exist scalars 0i  and 0i , and matrices  nm

i RL   and nnT
ii RPP  , i=1,2,…,q, 

and scalars ij , for all AIji },{ , satisfy the following matrix inequalities and equalities: 

0 iii QP  , i=1,2,…,q,             (26) 

0 iiii
T
i

T
iiiiii

T
i LBPPBLQAPPA  , i=1,2,…,q,  (27) 

)( jiijji QQPP   , for all AIji },{ .   (28) 

In this case, the function xPxxV x
T

x )()( )(    is a SCLF for (1). In addition,  
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is an asymptotically stabilizing feedback law for (1) under the switching rule (7). 
Proof: By (28) it is clear that xPxxPx j

T
i

T   on ijS , for all AIji },{ . That is, )()( xV x  is 
continuous in all state space. By Definition 1 and Theorem 1 and noting (26) and (27), it is 
obvious that xPxxV x

T
x )()( )(    is a SCLF for (1).   

To show that (29) is a stabilizing feedback law, notice that, for each SIi , if }{\ 0ix   
(and ixσ )( ) such that 0)(xbi , we have 

.
)(

)()()(
)()()()()(

0               
              
              








xa
xhxbxa

uxbxaxVxV

i

iii

iiix



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That is, if no sliding motions occur on the switching surfaces, the closed-loop system is 
asymptotically stable since 0 )()( xV x

  0x  (notice that the index set SI  is countable).  
In the case that sliding motion occurs, we need to prove the stability of sliding motion. If a 
sliding motion occurs on ijS  for some AIji },{ , first suppose that )()( xVxV ji   for ix   
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is a stabilizing feedback controller for (33) under the switching rule (34).  
 
Fig. 1 shows the state trajectories of the closed-loop switched system starting from several 
different initial conditions with 010.k . Notice that sliding motions occur.  
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Fig. 1. State trajectories of the closed-loop switched system with k=0.01. 

 
5. Conclusion 

In this chapter, based on the use of switched control Lyapunov function approach, it has 
been shown that the design of stabilizing feedback laws for state-dependent nonlinear 
control systems in feedback linearizable form can be achieved by solving matrix problems. 
An example is given to illustrate the success of the method. However, solving the resultant 
bilinear matrix inequalities with equality constraints is not easy. 
Further research topics include the development of feasible and efficient algorithms for 
solving the resultant matrix problem, the extension of the proposed approach to nonlinear 
control systems in some more general forms, and the search of stabilizing feedback laws to 
guarantee the non-existence of sliding motions.  
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1. Introduction 

Switched control has been applied widely in the intelligent robots, aerospace and 
aeronautics engineering and wireless communications. In this chapter, the robust H∞ control 
for linear uncertain switched systems with time delay is studied. 
Switched systems with time delay include the system with single time delay and the system 
with multiple time delays. Linear switched systems with time delay can be described as 
follows: 
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                            (1) 

where ( ) nx t R  is the system state vector, 1( ) mu t R  is the input vector, 2( ) mz t R  is the 
output vector, 2( )w t l is the disturbance vector,  ( ) :[0, ) 1, 2,3...,t M m     is the 
switching signal, ( )tA ,  ( )dj tA  , ( )tB , 1 ( )tB  , ( )tC , ( )dj tC  , ( )tD , 2 ( )tB   are known constant 
matrices, ( )t  represents the initial condition of the system, j  represents the time delay. For 
the system (1), if N=1，it is a switched system with single time delay, otherwise it is a 
switched system with multiple time delays. 
The state feedback control for switched systems can be designed with memory or without 
memory. 
For the switched system (1), the state feedback control can be designed as follows: 

( ) ( )iu t K x t  is the state feedback control without memory; 

1
( ) ( ) ( )

N

i j ij
j

u t K x t K x t 


    is the state feedback control with memory. 

Compared with the results on the stability of switched systems, research on the H∞ control 
for switched systems is not adequate yet. Attentions have been attracted to the H∞ control 
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for switched systems since 1998, when Hespanha considered the problem firstly. Similar to 
the stability problem, the H∞ control problem can be classified into: 

Problem A. The H∞ control under arbitrary switching signal; 
 Problem B. The H∞ control under a certain switching signal. 
Problem A means the internal stability and the L2 gain of the switched systems are 
independent of the switching signal. Problem A is usually solved through the common 
Lyapunov method which is conservative in that the common Lyapunov function is not easy 
to choose. 
Wu and Meng (Wu & Meng, 2009) studied H∞ model reduction for continuous-time linear 
switched systems with time-varying delay. By applying the average dwell time approach 
and the piecewise Lyapunov function technique, delay delay-dependent and delay-
independent sufficient conditions are proposed in terms of linear matrix inequality (LMI) to 
guarantee the exponential stability and the weighted H∞ performance for the error system. 
Zhang and Liu (Zhang & Liu 2008) studied the problem of delay-dependent robust H∞ 
control for switched systems with disturbance and time-varying structured uncertainties. A 
sufficient condition ensuring the robust stabilization and H∞ performance under arbitrary 
switching laws was obtained based on the Lyapunov function and Finslerpsilas lemma. Xie 
et al. (Xie et al., 2004) proposed conditions for uniformly quadratic stability for uncertain 
switched systems based on common Lyapunov method and LMI formulation. Fu et al. (Fu 
et al., 2007) proposed a the sufficient condition for the design of dynamic output feedback 
control of switched systems based on the common Lyapunov function approach and convex 
combination technique. Song et al. (Song et al., 2007) present the switching law and robust 
H ∞ control design for a class of discrete switched systems with time-varying delay. Song 
(Song et al., 2006) also studied a class of uncertain discrete switched systems with time delay. 
The switching law and the H∞ controller are given based on the Multi-Lyapunov Function 
method. Ma et al. (Ma et al., 2006) proposed an H∞ controller with memory for discrete 
switched systems with time delay. 
In this chapter, the robust H∞ control based on multi-Lyapunov-Function approach and LMI 
formulation for general linear switched systems with time delay is first introduced. The 
results are then extended to robust H∞ control without and with memory for uncertain 
linear switched systems with time-varying delay. Suppose all sub-systems are not robust 
stable, a sufficient condition for system stabilization with H∞ bound is given, as well as the 
design algorithm for the robust H∞ switched control and the switching law. The simulation 
results show the effectiveness of the methods. 

 
2. Robust H∞ stability and stabilization for linear switched systems 

Consider the following linear switched system: 

i i

i

x A x B w
z C x
 



                                                                  (2) 

 

where， ( ) nx t R  is the state vector, 2( ) mz t R  is the output vector, 2( )w t l  is the 
disturbance vector, , ,i i iA B C  are constant matrices with proper dimensions. 

 :[0, ) 1, 2,3...,i M m   is the switching signal. 
Lemma 1: X, Y  are matrices with proper dimensions. There exists a scalar 0   such that 
the following inequality holds： 

1T T T TX Y Y X X X Y Y                                                         (3) 

Lemma 2: For given symmetric matrix 11 12
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Lemma 3: For a given scalar 0  ， max( ),i i M   , if there is a switching law ( ( ), )i i x t t  
and a positive matrix iP  satisfying 
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the system (2) is stable with H∞ performance  . 
Proof: Choose the Lyapunov function of the sub-system of system (2) as T

i iV x Px . The 
derivative of the Lyapunov function is 
       ( )T T T T T T T

i i i i i i i i i i iV x Px x Px x A P PA x w B Px x B Pw         
When w=0，if the above equation satisfies 
                     ( ) 0T T

i i i ix A P PA x   
the system (2) is asymptotic stable. 
According Lemma 2, the inequality (5) is equivalent to  
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For any x(t) and w(t)，the following inequality holds 

 2

( ) ( )
0 0

*( ) 0 ( )

TTT T T
i i i i i i i

iT T
i

A P PA PBx t C x t
C

Iw t w t

                        
 

which is equivalent to 
2( ( ), ( ), ) ( ) ( ) ( ) ( ) 0T T
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Under the zero initial condition, we have 
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for switched systems since 1998, when Hespanha considered the problem firstly. Similar to 
the stability problem, the H∞ control problem can be classified into: 

Problem A. The H∞ control under arbitrary switching signal; 
 Problem B. The H∞ control under a certain switching signal. 
Problem A means the internal stability and the L2 gain of the switched systems are 
independent of the switching signal. Problem A is usually solved through the common 
Lyapunov method which is conservative in that the common Lyapunov function is not easy 
to choose. 
Wu and Meng (Wu & Meng, 2009) studied H∞ model reduction for continuous-time linear 
switched systems with time-varying delay. By applying the average dwell time approach 
and the piecewise Lyapunov function technique, delay delay-dependent and delay-
independent sufficient conditions are proposed in terms of linear matrix inequality (LMI) to 
guarantee the exponential stability and the weighted H∞ performance for the error system. 
Zhang and Liu (Zhang & Liu 2008) studied the problem of delay-dependent robust H∞ 
control for switched systems with disturbance and time-varying structured uncertainties. A 
sufficient condition ensuring the robust stabilization and H∞ performance under arbitrary 
switching laws was obtained based on the Lyapunov function and Finslerpsilas lemma. Xie 
et al. (Xie et al., 2004) proposed conditions for uniformly quadratic stability for uncertain 
switched systems based on common Lyapunov method and LMI formulation. Fu et al. (Fu 
et al., 2007) proposed a the sufficient condition for the design of dynamic output feedback 
control of switched systems based on the common Lyapunov function approach and convex 
combination technique. Song et al. (Song et al., 2007) present the switching law and robust 
H ∞ control design for a class of discrete switched systems with time-varying delay. Song 
(Song et al., 2006) also studied a class of uncertain discrete switched systems with time delay. 
The switching law and the H∞ controller are given based on the Multi-Lyapunov Function 
method. Ma et al. (Ma et al., 2006) proposed an H∞ controller with memory for discrete 
switched systems with time delay. 
In this chapter, the robust H∞ control based on multi-Lyapunov-Function approach and LMI 
formulation for general linear switched systems with time delay is first introduced. The 
results are then extended to robust H∞ control without and with memory for uncertain 
linear switched systems with time-varying delay. Suppose all sub-systems are not robust 
stable, a sufficient condition for system stabilization with H∞ bound is given, as well as the 
design algorithm for the robust H∞ switched control and the switching law. The simulation 
results show the effectiveness of the methods. 

 
2. Robust H∞ stability and stabilization for linear switched systems 

Consider the following linear switched system: 
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where， ( ) nx t R  is the state vector, 2( ) mz t R  is the output vector, 2( )w t l  is the 
disturbance vector, , ,i i iA B C  are constant matrices with proper dimensions. 

 :[0, ) 1, 2,3...,i M m   is the switching signal. 
Lemma 1: X, Y  are matrices with proper dimensions. There exists a scalar 0   such that 
the following inequality holds： 

1T T T TX Y Y X X X Y Y                                                         (3) 

Lemma 2: For given symmetric matrix 11 12
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S S
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Lemma 3: For a given scalar 0  ， max( ),i i M   , if there is a switching law ( ( ), )i i x t t  
and a positive matrix iP  satisfying 
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the system (2) is stable with H∞ performance  . 
Proof: Choose the Lyapunov function of the sub-system of system (2) as T

i iV x Px . The 
derivative of the Lyapunov function is 
       ( )T T T T T T T

i i i i i i i i i i iV x Px x Px x A P PA x w B Px x B Pw         
When w=0，if the above equation satisfies 
                     ( ) 0T T

i i i ix A P PA x   
the system (2) is asymptotic stable. 
According Lemma 2, the inequality (5) is equivalent to  
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For any x(t) and w(t)，the following inequality holds 
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Thus 
2

0 0
( ) ( ) ( ) ( )T Tz t z t dt w t w t dt

 
   

This completes the proof. 
From the above proof we know that if inequality (5) holds,  

1) When the disturbance w=0, the system is asymptotically stable; 
2) There exist a scalar 0  satisfying the robust H∞ performance 

2

0 0
( ) ( ) ( ) ( )T Tz t z t dt w t w t dt

 
   

Therefore, we can conclude that the switched system (2) satisfies the condition of robust H∞ 
control. 
Consider the following linear switched system： 

i i i

i

x A x Bu Dw
z C x
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
                                                               (6) 

where, ( ) nx t R  is the state vector， 1( ) mu t R  is the control input, 2( ) mz t R  is the output, 

2( )w t l  is the disturbance. , , ,i i i iA B C D  are constant matrices with proper dimensions. 
 :[0, ) 1, 2,3...,i M m   is the switching signal. 

Definition 1. For a given scalar 0  ， max( ),i i M   , if there is a state feedback control 
without memory iu K x ，such that the closed-loop subsystem of system (6) is stable with 
H∞ performance  ，the system (6) is robust stabilizable with H∞ performance  . 
With the above knowledge, we will study linear switched systems with time delay in the 
following sections. Firstly, the robust H∞ control for general linear switched systems is 
analyzed. The results are then extended to uncertain switched systems with time-varying 
delay and uncertain switched systems with multiple time delays. 

 
3. Robust H∞ stabilization for linear switched systems with time delay 

Consider the following Linear switched systems with time delay 
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Where ( ) nx t R  is the state vector, 1( ) mu t R  is the control input, 2( ) mz t R  is the output 
vector, 2( )w t l  is the disturbance, qz R  is the controlled output, 

 ( ) :[0, ) 1, 2,3...,t M m     is the switching signal, ( )tA ， ( )tB ， ( )d tA  ， ( )w tB  ， ( )tC  are 
known constant matrices，  is the time delay, ( )t  is a smooth function on nR  presenting 
the initial condition of the system. 
Theorem 1. For system (7), and given scalar 0  ， max( )i  , If there exist a switching 
law ( )t i  and positive matrices , n n

i iP R R   such that the following inequality holds: 
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where 1 ( ) ( )T
i i i i iS A BK P P A BK R     ，system (7) is stabilizable with H∞ performance  . 

The controller is ( ) ( )iu t K x t  and the switching law is ( ) argmin{ ( ) ( )}T
ii M

t x t Px t


 。 

Proof: Suppose there are positive definite matrices , n n
i iP R R   and matrix 1m n

iK R  , such 
that the linear matrix inequality (8) holds. The  controller is ( ) ( )iu t K x t  and choose the 
Lyapunov function as 
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When ( ) 0w t  , if (10) holds，the closed-loop system of system (7) is asymptotically stable. 
Thus, 
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2( )w t l  is the disturbance. , , ,i i i iA B C D  are constant matrices with proper dimensions. 
 :[0, ) 1, 2,3...,i M m   is the switching signal. 

Definition 1. For a given scalar 0  ， max( ),i i M   , if there is a state feedback control 
without memory iu K x ，such that the closed-loop subsystem of system (6) is stable with 
H∞ performance  ，the system (6) is robust stabilizable with H∞ performance  . 
With the above knowledge, we will study linear switched systems with time delay in the 
following sections. Firstly, the robust H∞ control for general linear switched systems is 
analyzed. The results are then extended to uncertain switched systems with time-varying 
delay and uncertain switched systems with multiple time delays. 

 
3. Robust H∞ stabilization for linear switched systems with time delay 

Consider the following Linear switched systems with time delay 
 

( ) ( ) ( ) ( )

( )

( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( )

t d t t w t

t

x t A x t A x t B u t B w t
z t C x t
x t t

   







    
 
 



                                    (7)  
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This complete the proof. 
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gain 1,i i iK Y X i M   can be obtained by solving inequality (14). 
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By solving the linear matrix inequality (14), we have: 
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Fig. 1. State response of Example 1 
 
By Theorem 1, the switching law is designed as: 
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The state response of the closed-loop system is shown in Figure 1. x1 and x2 are system 
states, the initial condition is [x1,x2]=[10,-10]. The result shows the system is stable under 
the switching law when it is switched among the closed-loop subsystems.  

 
4. Robust H∞ stabilization for uncertain linear switched systems with time-
varying delay 

Consider the following linear uncertain switched system with time-varying delay 
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where ， ( ) nx t R  is state vector, 1( ) mu t R  is the control input, 2( ) mz t R is the 
output, 2( )w t l  is the disturbance,   ( ) :[0, ) 1, 2,3...,t M m     is the switching signal, 

( )tA ， ( )d tA  ， ( )tB ， ( )h tB  ， 1 ( )w tB  ， ( )tC ， ( )d tC  ， ( )tD ， ( )h tD  ， 2 ( )w tB   are known 
constant matrices, ( )d tA  ， ( )tB ， ( )h tB  ， 1 ( )w tB  ， ( )tC ， ( )d tC  ， ( )tD ， ( )h tD  ，

2 ( )w tB   are bounded real functional matrices with proper dimensions, representing the 
uncertainties, ( )t  is the initial condition. d(t) and h(t) are the state delay and the control 
delay respectively. There are positive scalers , , ,d hd h   , such that 
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Fig. 1. State response of Example 1 
 
By Theorem 1, the switching law is designed as: 

1 2

1 2

1, ( ) 0
( ) i

2, ( ) 0

T

T

x P P x
t

x P P x


 
 

 
＝  

The state response of the closed-loop system is shown in Figure 1. x1 and x2 are system 
states, the initial condition is [x1,x2]=[10,-10]. The result shows the system is stable under 
the switching law when it is switched among the closed-loop subsystems.  
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where ， ( ) nx t R  is state vector, 1( ) mu t R  is the control input, 2( ) mz t R is the 
output, 2( )w t l  is the disturbance,   ( ) :[0, ) 1, 2,3...,t M m     is the switching signal, 

( )tA ， ( )d tA  ， ( )tB ， ( )h tB  ， 1 ( )w tB  ， ( )tC ， ( )d tC  ， ( )tD ， ( )h tD  ， 2 ( )w tB   are known 
constant matrices, ( )d tA  ， ( )tB ， ( )h tB  ， 1 ( )w tB  ， ( )tC ， ( )d tC  ， ( )tD ， ( )h tD  ，

2 ( )w tB   are bounded real functional matrices with proper dimensions, representing the 
uncertainties, ( )t  is the initial condition. d(t) and h(t) are the state delay and the control 
delay respectively. There are positive scalers , , ,d hd h   , such that 
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0 ( ) , ( ) 1

0 ( ) , ( ) 1
d

h

d t d d t

h t h h t





     

     



                                                    (17) 

Denote 
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) 1 1 ( ) 1 ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) 2 2 ( ) 2 ( )

, ,

,

, ,

,

t t d d t d t t t

h h t h t w t w t

t t d d t d t t t

h h t h t w t w t

A A A A A A B B B

B B B B B B

C C C C C C D D D

D D D B B B

     

   

     

   

        

     

        

     

                             (18) 

and suppose: 

 ( ) ( ) ( ) ( ) 1 ( ) 1
( ) 1 2 3 4 5

( ) ( ) ( ) ( ) 2 ( ) 2

t d t t h t w t
t

t d t t h t w t

A A B B B H
F E E E E E

C C D D B H
     

     
     

       
          

              (19) 

where 1 2 1 2 3 4 5, , , , , ,H H E E E E E        are constant matrices with proper dimensions and ( )tF  
satisfying 

( ) ( )
T
t tF F I                                                                      (20) 

Theorem 2 For a given scalar 0i  , if there are positive definite matrices 1 2, , n n
i i iP R R R  , 

such that： 

1 1

1

2
2

2

* (1 ) 0 0
0* * (1 ) 0

* * *
* * * *

T T T
i d i h i i i

T
d i d

T T
h i i h

T
i

S PA PB K PB C K D
R C

R K D
I B

I






 
   
   
 

 
  

                                 (21) 

where  
1 1 2

T T T
i i i i i i i iS A P PA K B P PBK R R       

 the system (16) is robust stabilizable with H∞ performance  ， max( )i  . ( ) ( )iu t K x t  is 

the switched robust H∞ controller. The switching law is ( ) argmin{ ( ) ( )}T
ii M

t i x t Px t


  。 

Proof: If there are positive definite matrices 1 2, , n n
i i iP R R R    and matrix 1m n

iK R   satisfying 
the inequality (21) with the controller ( ) ( )iu t K x t  and Lyapunov function: 

1 2( ) ( )
( ( ), ( ), ) ( ) ( ) ( ) ( ) ( ) ( )

t tT T T
i i it d t t h t

V x t w t t x t Px t x s R x s ds x s R x s ds
 

         

Then 
1 2

1 2

1 2

( ( ), ( ), ) ( ) ( ) ( ) ( ) ( )( ) ( )

(1 ( )) ( ( )) ( ( )) (1 ( )) ( ( )) ( ( ))

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( )( ) (

T T T
i i i i

T T
i i

T T T T T T T
i i i i i i

T
i i

V x t w t t x t Px t x t Px t x t R R x t

d t x t d t R x t d t h t x t h t R x t h t
x t A Px t x t PAx t x t K B Px t x t PBK x t
x t R R x

   

       

   

 

  
 

1 1

1

2

) ( ) ( ) ( ) ( )

( ( )) ( ) ( ) ( ( )) ( ( )) ( )

( ) ( ( )) (1 ( )) ( ( )) ( ( ))

(1 ( )) ( ( )) ( ( ))

T T T
i

T T T T T T
d i i d i h i

T T
i h i i

T
i

t x t PBw t w t B Px t
x t d t A Px t x t PA x t d t x t h t K B Px t

x t PB K x t h t d t x t d t R x t d t

h t x t h t R x t h t

 

     

     

   





              (22) 

When ( ) 0w t  , considering condition (17), if inequality (23) holds, the closed-loop system is 
robust asymptotically stable 

 

1 2

1

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( )( ) ( ) ( ( )) ( ) ( ) ( ( ))

( ( )) ( ) ( ) ( ( ))

(1 ) ( ( )) ( ( )) (1 ) (

T T T T T T T
i i i i i i

T T T T
i i d i i d

T T T T
i h i i h i

T T
d i h

x t A Px t x t PAx t x t K B Px t x t PBK x t
x t R R x t x t d t A Px t x t PA x t d t
x t h t K B Px t x t PB K x t h t

x t d t R x t d t x t 

  

     

   

      2( )) ( ( )) 0ih t R x t h t  

            (23) 

Rewrite inequality (23) as 

( ( )) ( ( )) ( ( )) ( ( )) 0
TT T T T T Tx x t d t x t h t W x x t d t x t h t                                 (24) 

where 

1 2

1

2

* (1 ) 0 0
* * (1 )

T T
i i i i i i i d i h i

d i

h i

A P PA K BK R R PA PB K
W R

R




    
     
   

 

By inequality (21) and Lemma 2, the following inequality follows 

1 2 1

1

2
2

2

3

* (1 ) 0 0
* * (1 ) 0
* * *

0

T T
i i i i i i d i h i i

d i

h i

i

T T T
i
T
d

i d h iT T
i h
T

A P PA K BK R R PA PB K PB
R

R
I

C K D
C

C DK C D K B
K D
B






    
    
  
 

  
 
 
      
 
  

                    (25) 

For any ( ), ( ( )), ( ( )), ( )x t x t d t x t h t w t  , the following inequality holds 

1 2 1

1

2
2

( ) ( )
( ( )) ( ( ))* (1 ) 0 0
( ( )) ( ( ))* * (1 ) 0
( ) ( )* * *

( )
( ( ))
( ( ))
( )

T T T
i i i i i i d i i i

d i

h i

i

T

x t x tA P PA K BK R R PA PBK PB
x t d t x t d tR
x t h t x t h tR
w t w tI

x t
x t d t
x t h t
w t






       
          
      
    

     

 
  
 
 
 

2

2

( )
( ( ))

0
( ( ))
( )

T T T
i
T
d

i d h iT T
i h
T

x tC K D
x t d tC

C DK C DK B
x t h tK D
wtB

   
            
   
    

                (26) 

Thus 
2( ) ( ) ( ) ( ) 0T TV z t z t w t w t                                                       (27) 

Under zero initial condition with max( ),i i M   , we have 

1

2

0

2

0

2

1

[ ( ) ( ) ( ) ( )]

[ ( ( ), ( ), ) ( ) ( ) ( ) ( )] ( ( ), ( ), )

[ ( ( ), ( ), ) ( ) ( ) ( ) ( )] ( ( ), ( ), ) 0i

i

T T

T T
i

M t T T
it

i

z t z t w t w t dt

V x t w t t z t z t w t w t dt V x w

V x t w t t z t z t w t w t dt V x w
















      

       










                   (28) 

Therefore 
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0 ( ) , ( ) 1

0 ( ) , ( ) 1
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



     

     



                                                    (17) 

Denote 
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) 1 1 ( ) 1 ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) 2 2 ( ) 2 ( )

, ,

,

, ,

,

t t d d t d t t t

h h t h t w t w t

t t d d t d t t t

h h t h t w t w t

A A A A A A B B B

B B B B B B

C C C C C C D D D

D D D B B B

     

   

     

   

        

     

        

     

                             (18) 

and suppose: 

 ( ) ( ) ( ) ( ) 1 ( ) 1
( ) 1 2 3 4 5

( ) ( ) ( ) ( ) 2 ( ) 2

t d t t h t w t
t

t d t t h t w t

A A B B B H
F E E E E E

C C D D B H
     

     
     

       
          

              (19) 

where 1 2 1 2 3 4 5, , , , , ,H H E E E E E        are constant matrices with proper dimensions and ( )tF  
satisfying 

( ) ( )
T
t tF F I                                                                      (20) 

Theorem 2 For a given scalar 0i  , if there are positive definite matrices 1 2, , n n
i i iP R R R  , 

such that： 

1 1

1

2
2

2

* (1 ) 0 0
0* * (1 ) 0

* * *
* * * *

T T T
i d i h i i i

T
d i d

T T
h i i h

T
i

S PA PB K PB C K D
R C

R K D
I B

I






 
   
   
 

 
  

                                 (21) 

where  
1 1 2

T T T
i i i i i i i iS A P PA K B P PBK R R       

 the system (16) is robust stabilizable with H∞ performance  ， max( )i  . ( ) ( )iu t K x t  is 

the switched robust H∞ controller. The switching law is ( ) argmin{ ( ) ( )}T
ii M

t i x t Px t


  。 

Proof: If there are positive definite matrices 1 2, , n n
i i iP R R R    and matrix 1m n

iK R   satisfying 
the inequality (21) with the controller ( ) ( )iu t K x t  and Lyapunov function: 

1 2( ) ( )
( ( ), ( ), ) ( ) ( ) ( ) ( ) ( ) ( )

t tT T T
i i it d t t h t

V x t w t t x t Px t x s R x s ds x s R x s ds
 

         

Then 
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
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   





              (22) 

When ( ) 0w t  , considering condition (17), if inequality (23) holds, the closed-loop system is 
robust asymptotically stable 
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( ( )) ( ) ( ) ( ( ))
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Rewrite inequality (23) as 

( ( )) ( ( )) ( ( )) ( ( )) 0
TT T T T T Tx x t d t x t h t W x x t d t x t h t                                 (24) 

where 
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   

 

By inequality (21) and Lemma 2, the following inequality follows 
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 
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                    (25) 

For any ( ), ( ( )), ( ( )), ( )x t x t d t x t h t w t  , the following inequality holds 
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                (26) 

Thus 
2( ) ( ) ( ) ( ) 0T TV z t z t w t w t                                                       (27) 

Under zero initial condition with max( ),i i M   , we have 
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


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                   (28) 

Therefore 
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2

0 0
( ) ( ) ( ) ( )T Tz t z t dt w t w t dt

 
   

This completes the proof. 
Remark 2: Although theorem 2 presents a sufficient condition for the robust stabilization 
with H∞ performance  , there are still uncertainties in the inequality (21).  
Theorem 3 For the switched system (16) and a given positive scalar i ，if there are matrix 

iY  with proper dimension, positive definite matrices 1 2, ,i i iX Q Q  and scalar 0   such that 
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where  
1 2 1 1

T T T T
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and 
1 2

T T T T
i iX C Y D H H     

holds，the system is robust stabilizable with H∞ performance  ， max( )i  . The  robust 
H∞ switched controller is given by: 

1,i i iK Y X i M                                                                 (30) 
And the switching law is  

    1( ) argmin{ ( ) ( )}T
ii M

t i x t X x t 


                                                    (31) 

Proof: For any non-zero vector  ，by inequality (21), we have 
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By Lemma 1 and inequality (20), we have 
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where 0  ， 
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If      
1

1 2 0L L L                                                                  (36) 
the inequality (21) follows 
By Lemma 2，inequality (36) is equivalent to: 
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Denote 
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and     1
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T T T T
i i i i i i i i i iS A P PA K B P PBK R R PH H P       ， iY  is an arbitrary matrix with 

proper dimension. 1 2,i iQ Q  are positive definite matrices with proper dimensions. By right 
and left multiplying the following matrix to the inequality (37) 
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This completes the proof. 
Remark 2: Although theorem 2 presents a sufficient condition for the robust stabilization 
with H∞ performance  , there are still uncertainties in the inequality (21).  
Theorem 3 For the switched system (16) and a given positive scalar i ，if there are matrix 

iY  with proper dimension, positive definite matrices 1 2, ,i i iX Q Q  and scalar 0   such that 
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and 
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holds，the system is robust stabilizable with H∞ performance  ， max( )i  . The  robust 
H∞ switched controller is given by: 

1,i i iK Y X i M                                                                 (30) 
And the switching law is  

    1( ) argmin{ ( ) ( )}T
ii M

t i x t X x t 


                                                    (31) 

Proof: For any non-zero vector  ，by inequality (21), we have 
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By Lemma 1 and inequality (20), we have 
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where 0  ， 
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If      
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1 2 0L L L                                                                  (36) 
the inequality (21) follows 
By Lemma 2，inequality (36) is equivalent to: 
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i i i i i i i i i iS A P PA K B P PBK R R PH H P       ， iY  is an arbitrary matrix with 

proper dimension. 1 2,i iQ Q  are positive definite matrices with proper dimensions. By right 
and left multiplying the following matrix to the inequality (37) 
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the inequality (29) follows. 
This completes the proof. 
Example 2 Consider uncertain switched system (16) with 
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By Theorem 3, we have: 
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and the switching law is designed as 
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The state response is shown in Figure 2. 
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Fig. 2. State response of Example 2 
 
x1 and x2 are system states. The initial condition is [x1,x2]=[5,-5]。The result shows the 
system is stable under the switching law when it is switched among the closed-loop sub-
systems.  

 
5. State feedback robust H∞ stabilization for linear uncertain switched 
systems with multiple time delays 

Consider the following linear switched system with multiple time delays 
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    
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  







                                           (39) 

where ( ) nx t R  is the system state vector, 1( ) mu t R is the control input of the system, 
2( ) mz t R  is the output vector, 2( )w t l  is the disturbance,  ( ) :[0, ) 1,2,3...,t M m    is the 

switching signal， ( )tA ， ( )dj tA  ， ( )tB ， 1 ( )tB  ， ( )tC ， ( )dj tC  ， ( )tD ， 2 ( )tB  are known 
constant matrices， ( )d tA  ， ( )dj tA  , ( )tB ， ( )tC ， ( )dj tC  ， ( )tD are bounded time-
varying real functional matrices with proper dimensions, denoting the uncertainties of the 
switched systems. ( )t  is the initial condition of the system. j  is the delay of the system 
state.  
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the inequality (29) follows. 
This completes the proof. 
Example 2 Consider uncertain switched system (16) with 
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         
    

     
   

1 0.5 0.3
, 1 ,

0 0.6
E  

   
   

 

1 1 1 1

2 2 2 2

2 2 2 2

0.5 0.4 0.5 0 0 0 0.2
2 , 3 , 4 , 5 ,

0 0 0 0.5 0 0.5 0.2

1 1 1 1 1 0 0.2 0
, 1 , , 1 ,

3 2 0 2 0 1 0 0

0.5 0.5 1 1 0.3 0.5
2 , 3 , , 1

0.3 0.4 1 2 0.2 0.1

E E E E

A A B B

B B C C

       
          
       
         

          
       
      

        
     

2 0.5 0
, ,

0 0.1
D  

   
   

 

2 2 2 2

2 2 2 2

0.5 0 1 0 0.5 0.4 1 0
1 , 1 , 2 , 1 ,

0 0.2 0 1 0 0 0 1

0.5 0.4 1 0 0 0 1
2 , 3 , 4 , 5

0 0 0 0 0 0.5 1

D H H E

E E E E

       
          
       
       

          
       

                                (38) 

Choose 
1 2 1 2 1 2

1 2 1

2 1 1 2 2
1 2

( ) sin( ), ( ) sin( ), ( ) c1os( ), ( ) cos( ), 0.5,
( ) 0.3sin( /3.85), ( ) 0.3sin( /3.85), ( ) 0.2sin( /3.85),
( ) 0.2sin( /3.85), 0.3, 0.2, 3, 0.3, 0.2, 3d h d h

F t t F t t w t t w t t
d t t d t t h t t
h t t

 

     

     

  

      

 

By Theorem 3, we have: 
1 14 .0697 0 8 .6086 0 .7780

,
0 4 .0 697 2 .3540 6 .1658

P K
    

        
 

2 21.9297 3.1929 0.6417 1.0618
,

3.1929 5.2830 3.6147 5.9809
P K

    
        

 

and the switching law is designed as 
1 2

1 2

1, ( ) 0
( ) i

2, ( ) 0

T

T

x P P x
t

x P P x


 
 

 
＝  

 

The state response is shown in Figure 2. 
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Fig. 2. State response of Example 2 
 
x1 and x2 are system states. The initial condition is [x1,x2]=[5,-5]。The result shows the 
system is stable under the switching law when it is switched among the closed-loop sub-
systems.  

 
5. State feedback robust H∞ stabilization for linear uncertain switched 
systems with multiple time delays 

Consider the following linear switched system with multiple time delays 

( ) ( ) ( ) ( )
1

( ) ( ) 1 ( )

( ) ( ) ( ) ( )
1

( ) ( ) 2 ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ), ( max( ),0)

N

t t dj t dj t j
j

t t t

N

t t dj t dj t j
j

t t t

j

x t A A x t A A x t

B B u t B w t

z t C C x t C C x t

D D u t B w t
x t t t

   

  

   

  





 





    

  

    

  

  







                                           (39) 

where ( ) nx t R  is the system state vector, 1( ) mu t R is the control input of the system, 
2( ) mz t R  is the output vector, 2( )w t l  is the disturbance,  ( ) :[0, ) 1,2,3...,t M m    is the 

switching signal， ( )tA ， ( )dj tA  ， ( )tB ， 1 ( )tB  ， ( )tC ， ( )dj tC  ， ( )tD ， 2 ( )tB  are known 
constant matrices， ( )d tA  ， ( )dj tA  , ( )tB ， ( )tC ， ( )dj tC  ， ( )tD are bounded time-
varying real functional matrices with proper dimensions, denoting the uncertainties of the 
switched systems. ( )t  is the initial condition of the system. j  is the delay of the system 
state.  
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Denote 
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

, ,

,
t t dj dj t dj t t t

t t dj dj t dj t t t

A A A A A A B B B

C C C C C C D D D
     

     

     

     
                                     (40) 

and suppose： 

( ) ( ) ( ) 1
( ) 1 2 3

( ) ( ) ( ) 2

t dj t t
t j

t dj t t

A A B H
F E E E

C C D H
   

   
   

     
           

                                    (41) 

where 1 2 1 2 3, , , ,jH H E E E      are real constant matrices with proper dimensions, and ( )tF  
satisfies: 

( ) ( )
T
t tF F I                                                                       (42) 

Theorem 4. For a given scalar 0i  ， if there are positive definite matrices 

1, ,..., n n
i i NiP Q Q R  , such that: 

1 1 1 1

1 1 1

2
2

( ) ... ( )
* 0 0 0
* 0 ... 0 0 ...

0
* 0 0 0
* * * *
* * * * *

T T T
i d i i dN Ni i i

T T T
i d i

T T T
Ni dN Ni

T
i

S P A BK P A BK PB C K D
Q C K D

Q C K D
I B

I


   
   
 

 
  

 
 

  

                (43) 

where 1
1

( ) ( )
N

T T T
i i i i ji

j
S A K B P P A BK Q



     ，the system (39) is robust stabilizable with H∞ 

performance  ， max( )i  . The state feedback switched H∞  control with memory is  

1

( ) ( ) ( )
N

i ji ji
j

u t K x t K x t 


    

Proof: Suppose there are positive definite matrices 1, ,..., n n
i i iNP Q Q R   and matrices 

1, m n
i jiK K R  , such that the inequality (43) holds. The state feedback control is 

1

( ) ( ) ( )
N

i ji iu
j

u t K x t K x t 


   . Choose the Lyapunov function as 

1

( ( ), ( ), ) ( ) ( ) ( ) ( )
j

N tT T
i jit

j
V x t w t t x t Px t x s Q x s ds




   

The derivative of the Lyapunov function is: 
 

1 1

1 1

1
1

( ( ), ( ), ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( )[ ( ) ( ) ] ( ) ( )( ) ( )

( ) ( ) ( ) ( )

N N
T T T T

i i ji j ji ji
j j

N N
T T T T

i i i i ji ji dj ji i
j j

N
T T T

i dj ji ji i
j

V x t wt t x t Px t x t Px t x t Q x t x t Q x t

x t P A BK A BK P Q x t x t A BK Px t

x t P A BK x t w t B Px

 





 

 



     

       

   

 

 



  

1
1

( ) ( ) ( ) ( ) ( )
N

T T
i ji ji ji

j
t x t PBwt x t Q x t 



   

                          (44) 

 
When ( ) 0w t  , if the following inequality holds, the closed-loop is asymptotically stable 

 

1 1

1 1

( )[ ( ) ( ) ] ( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( ) 0

N N
T T T T

i i i i ji ji dj ji i
j j

N N
T T

i dj ji ji ji ji ji
j j

x t P A BK A BK P Q x t x t A BK Px t

x t P A BK x t x t Q x t



  

 

 

      

      

 

 
                       (45) 

Rewrite the above inequality as 

1 1 1

1 11

( ) ( )( ) ... ( )
( ) ( )* 0 0

0
... ...* 0 ... 0

( ) ( )* 0 0

T
i d i i dN Ni

i ii

Ni NiNi

x t x tS P A BK P A BK
x t x tQ

x t x tQ

 

 

     
          
    
          

 

By Lemma 2 and inequality (43), we have 

1 1 1 1

1 1 1 1 1

2
2 2

( ) ... ( )
* 0 0 0

0* * ... 0 0 ... ...
* * * 0
* * * *

TT T T T T T
i d i i dN Ni i i i

T T T T T T
i d i d i

T T T T T T
Ni dN Ni dN Ni

T T
i

S P A BK P A BK PB C K D C K D
Q C K D C K D

Q C K D C K D
I B B

      
        
    
   

     
       

             (46) 

For any 1( ), ( ),... ( ), ( )i Nix t x t x t w t   ，the following inequality holds. 

1 1 1 1

1 11

2

1

( ) ( )( ) ... ( )
( ) ( )* 0 0 0
... ...* * ... 0 0

( ) ( )* * * 0
( ) ( )* * * *

( )
( )
...

( )
( )

T
i d i i dN Ni i

i ii

Ni NiiN

i

i

Ni

x t x tS P A BK P A BK PB
x t x tQ

x t x tQ
w t w tI

x t
x t

x t
w t

 

 






     
         
     
         
        


 





11 1 1 1

2 2

( )
( )

0...... ...
( )
( )

TT T T T T T T
i i

T T T T T T
id i d i

T T T T T T
NidN Ni dN Ni

T T

x tC K D C K D
x tC K D C K D

x tC K D C K D
w tB B





      
           
       
             
           

                      (47) 

Thus 
2( ( ), ( ), ) ( ) ( ) ( ) ( ) 0T T
iV x t w t t z t z t w t w t                           

Under the zero initial condition，by setting max( ),i i M   ，we have 

1

2

0

2

0

2

1

[ ( ) ( ) ( ) ( )]

[ ( ( ), ( ), ) ( ) ( ) ( ) ( )] ( ( ), ( ), )

[ ( ( ), ( ), ) ( ) ( ) ( ) ( )] ( ( ), ( ), ) 0i

i

T T

T T
i

M t T T
it

i

z t z t w t w t dt

V x t w t t z t z t w t w t dt V x w

V x t w t t z t z t w t w t dt V x w
















      

       










 

Therefore 
2

0 0
( ) ( ) ( ) ( )T Tz t z t dt w t w t dt

 
   

This completes the proof. 
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Denote 
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

, ,

,
t t dj dj t dj t t t

t t dj dj t dj t t t

A A A A A A B B B

C C C C C C D D D
     

     

     

     
                                     (40) 

and suppose： 

( ) ( ) ( ) 1
( ) 1 2 3

( ) ( ) ( ) 2

t dj t t
t j

t dj t t

A A B H
F E E E

C C D H
   

   
   

     
           

                                    (41) 

where 1 2 1 2 3, , , ,jH H E E E      are real constant matrices with proper dimensions, and ( )tF  
satisfies: 

( ) ( )
T
t tF F I                                                                       (42) 

Theorem 4. For a given scalar 0i  ， if there are positive definite matrices 

1, ,..., n n
i i NiP Q Q R  , such that: 

1 1 1 1

1 1 1

2
2

( ) ... ( )
* 0 0 0
* 0 ... 0 0 ...

0
* 0 0 0
* * * *
* * * * *

T T T
i d i i dN Ni i i

T T T
i d i

T T T
Ni dN Ni

T
i

S P A BK P A BK PB C K D
Q C K D

Q C K D
I B

I


   
   
 

 
  

 
 

  

                (43) 

where 1
1

( ) ( )
N

T T T
i i i i ji

j
S A K B P P A BK Q



     ，the system (39) is robust stabilizable with H∞ 

performance  ， max( )i  . The state feedback switched H∞  control with memory is  

1

( ) ( ) ( )
N

i ji ji
j

u t K x t K x t 


    

Proof: Suppose there are positive definite matrices 1, ,..., n n
i i iNP Q Q R   and matrices 

1, m n
i jiK K R  , such that the inequality (43) holds. The state feedback control is 

1

( ) ( ) ( )
N

i ji iu
j

u t K x t K x t 


   . Choose the Lyapunov function as 

1

( ( ), ( ), ) ( ) ( ) ( ) ( )
j

N tT T
i jit

j
V x t w t t x t Px t x s Q x s ds




   

The derivative of the Lyapunov function is: 
 

1 1

1 1

1
1

( ( ), ( ), ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( )[ ( ) ( ) ] ( ) ( )( ) ( )

( ) ( ) ( ) ( )

N N
T T T T

i i ji j ji ji
j j

N N
T T T T

i i i i ji ji dj ji i
j j

N
T T T

i dj ji ji i
j

V x t wt t x t Px t x t Px t x t Q x t x t Q x t

x t P A BK A BK P Q x t x t A BK Px t

x t P A BK x t w t B Px

 





 

 



     

       

   

 

 



  

1
1

( ) ( ) ( ) ( ) ( )
N

T T
i ji ji ji

j
t x t PBwt x t Q x t 



   

                          (44) 

 
When ( ) 0w t  , if the following inequality holds, the closed-loop is asymptotically stable 

 

1 1

1 1

( )[ ( ) ( ) ] ( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( ) 0

N N
T T T T

i i i i ji ji dj ji i
j j

N N
T T

i dj ji ji ji ji ji
j j

x t P A BK A BK P Q x t x t A BK Px t

x t P A BK x t x t Q x t



  

 

 

      

      

 

 
                       (45) 

Rewrite the above inequality as 

1 1 1

1 11

( ) ( )( ) ... ( )
( ) ( )* 0 0

0
... ...* 0 ... 0

( ) ( )* 0 0

T
i d i i dN Ni

i ii

Ni NiNi

x t x tS P A BK P A BK
x t x tQ

x t x tQ

 

 

     
          
    
          
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Remark 3. Theorem 4 presents a sufficient condition for robust stabilization with H∞ 
performance . Since there are uncertainties in inequality (43), it can not be solved directly.  
Lemma 5：For system (39), and given positive scalar i ，if there are matrices 1, ,...i i NiY Y Y , 
positive definite matrices 1, ,...,i i NiX R R  with proper dimensions，and scalar 0  ，such 
that the following inequality holds 
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is robust stabilizable with H∞ performance max( )i  . The robust H∞ control is given by： 
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Proof. The proof is similar to Theorem 3, and is omitted. 
Example 3 The linear uncertain switched system (39) with multiple time delays is given 
below.  
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Fig. 3. State response of Example 3 
 
By Lemma 5, the state feedback gain for system stabilization with H∞ performance are 
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The switching law is: 
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The state responses are shown in Figure 3. 
x1 and x2 are system states, the initial condition is [x1,x2]=[5,-5]。The result shows the 
system is stable under the switching law when it is switched among the closed-loop 
subsystems. 

 
6. Conclusion 

This chapter studies the robust H∞ control for linear switched systems with time delay. After 
introducing robust H∞ stability and stabilization of linear switched systems, we firstly 
analyzed robust H∞ control for general linear switched systems with time delay. Based on 
the multi-Lyapunov-Function method, a sufficient condition is derived in terms of LMI. The 
robust H∞ control and the switching law design are also given. 
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Fig. 3. State response of Example 3 
 
By Lemma 5, the state feedback gain for system stabilization with H∞ performance are 
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The state responses are shown in Figure 3. 
x1 and x2 are system states, the initial condition is [x1,x2]=[5,-5]。The result shows the 
system is stable under the switching law when it is switched among the closed-loop 
subsystems. 

 
6. Conclusion 

This chapter studies the robust H∞ control for linear switched systems with time delay. After 
introducing robust H∞ stability and stabilization of linear switched systems, we firstly 
analyzed robust H∞ control for general linear switched systems with time delay. Based on 
the multi-Lyapunov-Function method, a sufficient condition is derived in terms of LMI. The 
robust H∞ control and the switching law design are also given. 
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By involving uncertainties and time-varying delay, the robust H∞ control for uncertain 
linear switched systems with time varying delay is studied. Through the multi-Lyapunov-
Function approach, a sufficient condition is given in LMI formulation. The robust switched 
H∞ control and the the switching law design are presented as well. 
The state feedback robust H∞ control with memory is also studied for uncertain linear 
switched systems with multiple time delays. A sufficient condition is given as well as the 
robust switched H∞ control and the switching law. 
Illustrative examples are given to show the effectiveness of the proposed methods. 

 
7. References 

Wu, L.; & Meng, W.X. (2009). Weighted H∞ model reduction for linear switched systems 
with time-varying delay, Automatic, Vol. 45, No. 1, (Jan. 2009), 186-193, ISSN: 
00051098 

Zhang, X.; & Liu, Y. (2008). Delay-dependent robust H∞ control of a class of uncertain 
switched systems with time delay, Proceedings of the 7th World Congress on Intelligent 
Control and Automation, pp. 8873-8877, ISBN-13: 9781424421145, Chongqing, China, 
June 2008, IEEE, Piscataway 

Xie, D.; Wang, L.; Hao, F.; & Xie, G. (2004). LMI approach to L2-gain analysis and control 
synthesis of uncertain switched systems. IEEE Proc.-Control Theory Appl., Vol. 151, 
No. 1, (Jan. 2004), 21-28, 13502379 

Fu, Z.; Fei, S.; Long, F. & Cong, S. (2007). Robust H∞ dynamic output   feedback stabilization 
for a class of uncertain switched systems. Journal of Southeast University: Natural  
Science, Vol. 37, No. 1, (Jan. 2007), 1304-1310, 10010505 

Song, Z.; Nie, H.; & Zhao, J. (2007). Robust H∞ control of discrete-Time Switched Systems 
with time-varying delay. Journal of Northeastern University: Natural Science, Vol. 28, 
No. 4, (Apr. 2007), 469-472, 10053026 

Song, Z. & Zhao, J. (2006) Robust control of uncertain discrete-time switched systems with 
time-delay. Acta Automatic Sinica, Vol. 32, No. 5, (May 2006), 760-766, 02544156 

Ma, Y. ; Yan W. ; Liu D. & Zheng Y. (2006) H∞ control of discrete switched systems with 
time delay via state feedback with memory[C]. Proceedings of the 6th World Congress 
on Intelligent Control and Automation, pp. 1328-1332, ISBN-13: 9781424403325, 
Dalian, China, 2006, IEEE, Piscataway 



Active Suspension in Integrated Vehicle Control 83

Active Suspension in Integrated Vehicle Control

Péter Gáspár, Zoltán Szabó and József Bokor

0

Active Suspension in Integrated Vehicle Control
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1. Introduction

These days road vehicles contain several individual active control mechanisms that solve a
large number of control tasks. These components are often highly nonlinear, which are mod-
elled as hybrid systems. An example is the semiactive/active suspension system, which can
be modelled as a nonlinear dynamics augmented with an actuator that has a bimodal dy-
namics, i.e. a closed loop switching system with two modes. Moreover, in traditional control
systems the vehicle functions to be controlled are designed and implemented separately. Al-
though in the design of the individual control components only a subset of the full vehicle dy-
namics is considered these components influence the entire vehicle. Thus in the operation of
these autonomous control systems interactions and conflicts may occur that might overwrite
the intentions of the designers concerning the individual performance requirements. The aim
of the integrated control methodologies is to combine and supervise all controllable subsys-
tems affecting vehicle dynamic responses in order to ensure the management of resources.
The solution might be the integration of the control logic of subsystems.
Active suspensions are used to provide good handling characteristics and improve ride com-
fort while harmful vibrations caused by road irregularities and on-board excitation sources act
upon the vehicle. The performance of suspension systems is assessed quantitatively in terms
of several parameters: passenger comfort, suspension deflection, tire load variation and en-
ergy consumption, see Gillespie (1992); Sharp & Crolla (1987). In order to improve passenger
comfort it is important to keep the effects of the road disturbance on the heave acceleration
small. Structural features of the vehicle place a hard limit on the amount of suspension deflec-
tion available for reducing the acceleration of the vehicle body. Hence it is also important to
keep the effect of the disturbance on the suspension deflection sufficiently small. In order to
reduce the dynamic tire load deflection, the effects of the disturbance on tire deflection should
also be kept small. The control force limitation is incorporated into the design procedure in
order to avoid large control forces.
Applying a braking force decelerates the vehicle. Additionally, the role of the active brake is
to apply unilateral braking since it reduces the lateral tire forces directly Chen & Peng (2001);
Palkovics et al. (1999). This feature provides a redundancy in affecting the lateral dynamics.
However, using the active brake might have unwanted side effects as the modification of the
yaw dynamics and of the longitudinal direction of the vehicle. Therefore the use of the active
brake is preferred only in emergencies.
In this paper a control structure that integrates active suspensions and an active brake is pro-
posed to improve the safety of vehicles. On the global level the active suspension system is
primarily designed to improve passenger comfort and road holding. However, it is able to
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generate a stabilizing moment to balance an overturning moment during vehicle maneuvers
in order to reduce the rollover risk. The controlled braking system is activated only when the
vehicle comes close to rolling over. During abrupt brakings pitch dynamics increases signifi-
cantly. The active suspension is also able to generate a moment and improve the pitch stability
of the vehicle.
Rollover prevention is a safety feature. The combination of the active suspension and ac-
tive brake handles the emergency situation provided that the active suspension component
is fully functional. In order to enhance safety the reconfigurable control is extended with a
fault-tolerant property in order to guarantee performances even if a hydraulic actuator fault
occurs in the active suspension system. The solution of the fault-tolerant operation requires
the reconfigurability of the active brake.
The control design of switched systems is involved at two levels: at the suspension actuator
level a tracking controller is designed for a bimodal system together with a fault detection
filter.
This paper presents the application of the Linear Parameter Varying (LPV) method for the
design of integrated vehicle control systems, in which several active components are used in
co-operation. In the control design besides performance specifications and uncertainties, the
fault information can be taken into consideration. By monitoring suitable scheduling param-
eters in the LPV control, the reconfiguration of the control systems can be achieved, conflict
between performance demands can be avoided and faults (loss in effectiveness) can be han-
dled. This level provides the reference signal for the low-level actuator design and it also
constitutes the supervisor controller for the reconfiguration. By using the LPV method the
designed controller guarantees the desired stability and performance demands of the closed–
loop system. The operation of the control systems is demonstrated through various simulation
vehicle maneuvers.
The structure of the paper is the following: the global chassis model containing both the verti-
cal and later dynamics is presented in Section 2. It is followed by a detailed formulation of the
control problem in Section 3. The actuator dynamics is considered in Section 4. where a track-
ing control is designed. Possible faults of the suspension actuator are detected by using the
FDI filter of Section 5. The proposed method is demonstrated through a series of simulation
examples in Section 6. Finally some conclusion remarks are formulated in Section 7.

2. Global chassis model

The class of finite dimensional linear systems, whose state space entries depend continuously
on a time varying parameter vector, ρ(t), is called LPV. The trajectory of the vector-valued
signal, ρ(t) is assumed not to be known in advance, although its value is accessible (measured)
in real time and is constrained a priori to lie in a specified bounded set. The idea behind using
LPV systems is to take advantage of the casual knowledge of the dynamics of the system, see
Becker & Packard (1994); Leith & Leithead (2000); Rough & Shamma (2000); Wu (2001). The
formal definition of an LPV system is given below:
For a compact subset � ⊂ ℛS, the parameter variation set ℱ� denotes the set of all piecewise
continuous functions mapping ℛ (time) into � with a finite number of discontinuities in any
interval. The compact set � ⊂ ℛS, along with continuous functions A : ℛS → ℛn×n and
B : ℛS →ℛn×nu represents an nth order LPV system G(ρ) whose dynamics evolve as

ẋ = A(ρ)x + B(ρ)u, (1)

where ρ ∈ℱ� . One characteristics of the LPV system is that it must be linear in the pair formed
by the state vector x, and the control input vector u. The matrices A and B are generally
nonlinear functions of the scheduling vector ρ.
Due to the complexity of a vehicle model two models are formalized. One model is suitable
for designing the suspension system and it also takes the vertical dynamics into consideration.
The other model is used to design lateral dynamics and the brake system. Connection between
the two models is achieved by the application of the integrated control system.
In order to describe the vertical dynamics a full-car model, which is shown in Figure 1, is
used that comprises five parts: the sprung mass and four unsprung masses at the left and
right hand side at the front and rear. All the suspensions are modelled as an ensemble of a
spring, a damper and an actuator to generate a pushing force between the body and the axle.
The suspension stiffness and the tire stiffness are denoted by ks and ktwhile front and rear
suspension dampers are denoted by bs,respectively. Let the front and rear displacement of the
sprung mass on the left and right side be denoted by x1 f l , x1rl and x1 f r, x1rr. Let the front and
rear displacement of the unsprung mass on the left and right side be denoted by x2 f l , x2rl ,
x2 f r, and x2rr. In the full-car model, the disturbances, w f l , wrl , w f r, wrr are caused by road
irregularities. The input signals, f f l , frl , f f r, frr are generated by the actuators. The system

Fig. 1. Vertical model of the vehicle

equations correspond to a seven degrees-of-freedom full-car vehicle model. The sprung mass
is assumed to be a rigid body and has freedoms of motion in the vertical, pitch and roll direc-
tions. The x1 is the vertical displacement at the center of gravity, θ is the pitch angle and φ is
the roll angle of the sprung mass, respectively. Each unsprung mass has freedom of motion in
the vertical direction, x2 f l , x2rl , x2 f r, x2rr. The vehicle dynamical model, i.e. the heave motion,
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generate a stabilizing moment to balance an overturning moment during vehicle maneuvers
in order to reduce the rollover risk. The controlled braking system is activated only when the
vehicle comes close to rolling over. During abrupt brakings pitch dynamics increases signifi-
cantly. The active suspension is also able to generate a moment and improve the pitch stability
of the vehicle.
Rollover prevention is a safety feature. The combination of the active suspension and ac-
tive brake handles the emergency situation provided that the active suspension component
is fully functional. In order to enhance safety the reconfigurable control is extended with a
fault-tolerant property in order to guarantee performances even if a hydraulic actuator fault
occurs in the active suspension system. The solution of the fault-tolerant operation requires
the reconfigurability of the active brake.
The control design of switched systems is involved at two levels: at the suspension actuator
level a tracking controller is designed for a bimodal system together with a fault detection
filter.
This paper presents the application of the Linear Parameter Varying (LPV) method for the
design of integrated vehicle control systems, in which several active components are used in
co-operation. In the control design besides performance specifications and uncertainties, the
fault information can be taken into consideration. By monitoring suitable scheduling param-
eters in the LPV control, the reconfiguration of the control systems can be achieved, conflict
between performance demands can be avoided and faults (loss in effectiveness) can be han-
dled. This level provides the reference signal for the low-level actuator design and it also
constitutes the supervisor controller for the reconfiguration. By using the LPV method the
designed controller guarantees the desired stability and performance demands of the closed–
loop system. The operation of the control systems is demonstrated through various simulation
vehicle maneuvers.
The structure of the paper is the following: the global chassis model containing both the verti-
cal and later dynamics is presented in Section 2. It is followed by a detailed formulation of the
control problem in Section 3. The actuator dynamics is considered in Section 4. where a track-
ing control is designed. Possible faults of the suspension actuator are detected by using the
FDI filter of Section 5. The proposed method is demonstrated through a series of simulation
examples in Section 6. Finally some conclusion remarks are formulated in Section 7.

2. Global chassis model

The class of finite dimensional linear systems, whose state space entries depend continuously
on a time varying parameter vector, ρ(t), is called LPV. The trajectory of the vector-valued
signal, ρ(t) is assumed not to be known in advance, although its value is accessible (measured)
in real time and is constrained a priori to lie in a specified bounded set. The idea behind using
LPV systems is to take advantage of the casual knowledge of the dynamics of the system, see
Becker & Packard (1994); Leith & Leithead (2000); Rough & Shamma (2000); Wu (2001). The
formal definition of an LPV system is given below:
For a compact subset � ⊂ ℛS, the parameter variation set ℱ� denotes the set of all piecewise
continuous functions mapping ℛ (time) into � with a finite number of discontinuities in any
interval. The compact set � ⊂ ℛS, along with continuous functions A : ℛS → ℛn×n and
B : ℛS →ℛn×nu represents an nth order LPV system G(ρ) whose dynamics evolve as

ẋ = A(ρ)x + B(ρ)u, (1)

where ρ ∈ℱ� . One characteristics of the LPV system is that it must be linear in the pair formed
by the state vector x, and the control input vector u. The matrices A and B are generally
nonlinear functions of the scheduling vector ρ.
Due to the complexity of a vehicle model two models are formalized. One model is suitable
for designing the suspension system and it also takes the vertical dynamics into consideration.
The other model is used to design lateral dynamics and the brake system. Connection between
the two models is achieved by the application of the integrated control system.
In order to describe the vertical dynamics a full-car model, which is shown in Figure 1, is
used that comprises five parts: the sprung mass and four unsprung masses at the left and
right hand side at the front and rear. All the suspensions are modelled as an ensemble of a
spring, a damper and an actuator to generate a pushing force between the body and the axle.
The suspension stiffness and the tire stiffness are denoted by ks and ktwhile front and rear
suspension dampers are denoted by bs,respectively. Let the front and rear displacement of the
sprung mass on the left and right side be denoted by x1 f l , x1rl and x1 f r, x1rr. Let the front and
rear displacement of the unsprung mass on the left and right side be denoted by x2 f l , x2rl ,
x2 f r, and x2rr. In the full-car model, the disturbances, w f l , wrl , w f r, wrr are caused by road
irregularities. The input signals, f f l , frl , f f r, frr are generated by the actuators. The system

Fig. 1. Vertical model of the vehicle

equations correspond to a seven degrees-of-freedom full-car vehicle model. The sprung mass
is assumed to be a rigid body and has freedoms of motion in the vertical, pitch and roll direc-
tions. The x1 is the vertical displacement at the center of gravity, θ is the pitch angle and φ is
the roll angle of the sprung mass, respectively. Each unsprung mass has freedom of motion in
the vertical direction, x2 f l , x2rl , x2 f r, x2rr. The vehicle dynamical model, i.e. the heave motion,



Switched Systems86

the pitch motion, the roll motion, the front and rear tires, is as follows:

msẍ1 = Fk f l + Fk f r + Fkrl + Fkrr + Fb f l + Fb f r + Fbrl + Fbrr

− f f l − f f r − frl − frr, (2)

Iθ θ̈ = l f Fk f l + l f Fk f r − lrFkrl − lrFkrr + l f Fb f l + l f Fb f r − lrFbrl + lrFbrr

− l f f f l − l f f f r + lr frl + lr frr, (3)

Iφφ̈ = t f Fk f l − t f Fk f r + trFkrl − trFkrr + t f Fb f l − t f Fb f r + trFbrl − trFbrr

− t f f f l + t f f f r − tr frl + tr frr, (4)

mu f ẍ2 f l = −Fk f l − Ft f l − Fb f l + f f l , (5)

mu f ẍ2 f r = −Fk f r − Ft f r − Fb f r + f f r, (6)

murẍ2rl = −Fkrl − Ftrl − Fbrl + frl , (7)

murẍ2rr = −Fkrr − Ftrr − Fbrr + frr, (8)

where the following linear approximations are applied:

x1 f l = x1 + l f θ + t f φ, x1 f r = x1 + l f θ − t f φ,

x1rl = x1 − lrθ + trφ, x1rr = x1 − lrθ − trφ.

The suspension damping force and the suspension spring force, respectively, are as follows:

Fbij = bl
s(ẋ2ij − ẋ1ij)− bsym

s ∣ẋ2ij − ẋ1ij∣+ bnl
s

√
∣ẋ2ij − ẋ1ij∣ sgn(ẋ2ij − ẋ1ij), (9)

Fkij = kl
s(x2ij − x1ij) + knl

s (x2ij − x1ij)
3, (10)

and fij are the forces of the actuator, where ij ∈ { f l, f r,rl,rr}. Here, parts of the nonlinear
suspension damper bs are bl

s, bnl
s and bsym

s . The bl
s coefficient affects the damping force linearly

while bnl
s has a nonlinear impact on the damping characteristics. bsym

s describes the asymmet-
ric behavior of the characteristics. Parts of the nonlinear suspension stiffness ks are a linear
coefficient kl

s and a nonlinear one, knl
s . The tire force is approximated by a linear model:

Ftij = kt(x2ij − wij). (11)

The state vector x is selected as follows:

xs =
[
q xu q̇ ẋu

]T (12)

with q =
[
x1 θ φ

]T and xu =
[
x2 f l x2 f r x2rl x2rr

]T . The state space representation of
the LPV model is as follows:

ẋs = As(ρs)xs+B1sv (ρs)ds + B2sv (ρs)us, (13)

where

us =
[

f f l f f r frl frr
]T . (14)

The disturbance is ds =
[
w f l wrl w f r wrr

]
. Variables concerning the front and rear dis-

placement between the sprung mass and the unsprung mass on the left and right side and
their velocities are selected as scheduling variables:

ρs =
[
ρbij ρkij

]T , ij ∈ ( f l, f r,rl,rr) (15)

where

ρbij = ẋ2ij − ẋ1ij, (16)

ρkij = x2ij − x1ij (17)

The scheduling variables ρbij depend on the relative velocity, while the scheduling variables
ρkij depend on the relative displacement. In practice, the relative displacement is a measured
signal. The relative velocity is then determined by numerical differentiation from the mea-
sured relative displacement.
Figure 2 illustrates the combined yaw-roll dynamics of the vehicle modelled by a three-body
system, in which ms is the sprung mass, mu, f is the unsprung mass at the front including the
front wheels and axle, and mu,r is the unsprung mass at the rear with the rear wheels and axle.
β denotes the side slip angle of the sprung mass, ψ is the heading angle, φ is the roll angle, ψ̇
denotes the yaw rate and θ the pitch angle. The roll angle of the unsprung mass at the front
and at the rear axle are denoted by φt, f and φt,r, respectively. ay denotes the lateral acceleration
and zs is the heave displacement while v stands for the forward velocity.
In the vehicle modelling the motion differential equations of the yaw-roll dynamics of the
single unit vehicle, i.e. the lateral dynamics, the yaw moment, the roll moment of the sprung
mass, the roll moment of the front and the rear unsprung masses, are formalized.

mv(β̇ + ψ̇)− mshφ̈ = Fy, f + Fy,r, (18)

−Ixzφ̈ + Izzψ̈ = Fy, f l f − Fy,rlr + lw∆Fb, (19)

(Ixx + msh2)φ̈ − Ixzψ̈ = msghφ + msvh(β̇ + ψ̇)

− k f (φ − φt, f )− b f (φ̇ − φ̇t, f ) + u f

− kr(φ − φt,r)− br(φ̇ − φ̇t,r) + ur, (20)

−hrFy, f = mu, f v(hr − hu, f )(β̇ + ψ̇) + mu, f ghu, f φt, f − kt, f φt, f

+ k f (φ − φt, f ) + b f (φ̇ − φ̇t, f ) + u f , (21)

−hrFy,r = mu,rv(hr − hu,r)(β̇ + ψ̇)− mu,rghu,rφt,r − kt,rφt,r

+ kr(φ − φt,r) + br(φ̇ − φ̇t,r) + ur. (22)

The detailed derivation of the equations of the yaw-roll dynamics of the single unit vehicle
can be found in Sampson & Cebon (2003).
The lateral tire forces Fy,i in the direction of velocity at the wheel ground contact points are
approximated proportionally to the tire side slip angle αi:

Fy, f = µCf α f , Fy,r = µCrαr.

The Ci is the tire side slip constant and αi is the tire side slip angle associated with the front
and rear axles. The chassis and the wheels have identical velocities at the wheel ground
contact points. The velocity equations for the front and rear wheels in the lateral and in the
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the pitch motion, the roll motion, the front and rear tires, is as follows:

msẍ1 = Fk f l + Fk f r + Fkrl + Fkrr + Fb f l + Fb f r + Fbrl + Fbrr

− f f l − f f r − frl − frr, (2)
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Iφφ̈ = t f Fk f l − t f Fk f r + trFkrl − trFkrr + t f Fb f l − t f Fb f r + trFbrl − trFbrr
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mu f ẍ2 f r = −Fk f r − Ft f r − Fb f r + f f r, (6)

murẍ2rl = −Fkrl − Ftrl − Fbrl + frl , (7)

murẍ2rr = −Fkrr − Ftrr − Fbrr + frr, (8)

where the following linear approximations are applied:

x1 f l = x1 + l f θ + t f φ, x1 f r = x1 + l f θ − t f φ,

x1rl = x1 − lrθ + trφ, x1rr = x1 − lrθ − trφ.

The suspension damping force and the suspension spring force, respectively, are as follows:

Fbij = bl
s(ẋ2ij − ẋ1ij)− bsym

s ∣ẋ2ij − ẋ1ij∣+ bnl
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√
∣ẋ2ij − ẋ1ij∣ sgn(ẋ2ij − ẋ1ij), (9)

Fkij = kl
s(x2ij − x1ij) + knl

s (x2ij − x1ij)
3, (10)

and fij are the forces of the actuator, where ij ∈ { f l, f r,rl,rr}. Here, parts of the nonlinear
suspension damper bs are bl

s, bnl
s and bsym

s . The bl
s coefficient affects the damping force linearly

while bnl
s has a nonlinear impact on the damping characteristics. bsym

s describes the asymmet-
ric behavior of the characteristics. Parts of the nonlinear suspension stiffness ks are a linear
coefficient kl

s and a nonlinear one, knl
s . The tire force is approximated by a linear model:

Ftij = kt(x2ij − wij). (11)

The state vector x is selected as follows:

xs =
[
q xu q̇ ẋu

]T (12)

with q =
[
x1 θ φ

]T and xu =
[
x2 f l x2 f r x2rl x2rr

]T . The state space representation of
the LPV model is as follows:

ẋs = As(ρs)xs+B1sv (ρs)ds + B2sv (ρs)us, (13)

where

us =
[

f f l f f r frl frr
]T . (14)

The disturbance is ds =
[
w f l wrl w f r wrr

]
. Variables concerning the front and rear dis-

placement between the sprung mass and the unsprung mass on the left and right side and
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[
ρbij ρkij

]T , ij ∈ ( f l, f r,rl,rr) (15)

where

ρbij = ẋ2ij − ẋ1ij, (16)

ρkij = x2ij − x1ij (17)

The scheduling variables ρbij depend on the relative velocity, while the scheduling variables
ρkij depend on the relative displacement. In practice, the relative displacement is a measured
signal. The relative velocity is then determined by numerical differentiation from the mea-
sured relative displacement.
Figure 2 illustrates the combined yaw-roll dynamics of the vehicle modelled by a three-body
system, in which ms is the sprung mass, mu, f is the unsprung mass at the front including the
front wheels and axle, and mu,r is the unsprung mass at the rear with the rear wheels and axle.
β denotes the side slip angle of the sprung mass, ψ is the heading angle, φ is the roll angle, ψ̇
denotes the yaw rate and θ the pitch angle. The roll angle of the unsprung mass at the front
and at the rear axle are denoted by φt, f and φt,r, respectively. ay denotes the lateral acceleration
and zs is the heave displacement while v stands for the forward velocity.
In the vehicle modelling the motion differential equations of the yaw-roll dynamics of the
single unit vehicle, i.e. the lateral dynamics, the yaw moment, the roll moment of the sprung
mass, the roll moment of the front and the rear unsprung masses, are formalized.

mv(β̇ + ψ̇)− mshφ̈ = Fy, f + Fy,r, (18)

−Ixzφ̈ + Izzψ̈ = Fy, f l f − Fy,rlr + lw∆Fb, (19)
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−hrFy, f = mu, f v(hr − hu, f )(β̇ + ψ̇) + mu, f ghu, f φt, f − kt, f φt, f
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+ kr(φ − φt,r) + br(φ̇ − φ̇t,r) + ur. (22)

The detailed derivation of the equations of the yaw-roll dynamics of the single unit vehicle
can be found in Sampson & Cebon (2003).
The lateral tire forces Fy,i in the direction of velocity at the wheel ground contact points are
approximated proportionally to the tire side slip angle αi:

Fy, f = µCf α f , Fy,r = µCrαr.

The Ci is the tire side slip constant and αi is the tire side slip angle associated with the front
and rear axles. The chassis and the wheels have identical velocities at the wheel ground
contact points. The velocity equations for the front and rear wheels in the lateral and in the
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Fig. 2. Yaw and roll model of the vehicle

longitudinal directions are as follows:

vw, f sin(δ f − α f ) = l f ⋅ ψ̇ + vsin β, vw, f cos(δ f − α f ) = vcos β,

vw,r sinαr = lr ⋅ ψ̇ − vsin β, vw,r cosαr = vcos β.

In stable driving conditions, the tire side slip angle αi is normally not larger than five degrees
and the above equation can be simplified by substituting sin x ≈ x and cos x ≈ 1. The classic
equations for the tire side slip angles are then given as

α f = −β + δ f −
l f ⋅ ψ̇

v
, αr = −β +

lr ⋅ ψ̇

v
.

The equations (18)-(22) can be expressed in the state space representation form. The system
states are the side slip angle of the sprung mass β, the yaw rate ψ̇, the roll angle φ, the roll rate
φ̇, the roll angle of the unsprung mass at the front axle φt, f and at the rear axle φt,r. Let the
state vector be the following:

xr =
[
β ψ̇ φ φ̇ φt, f φt,r

]T . (23)

Using the state vector, the differential algebraic model defined by Equations (18)-(22) is trans-
formed into a state space representation form:

ẋr = Ar(ρr)xr+B1rv (ρr)dr + B2rv (ρr)ur. (24)

The disturbance is the front wheel steering angle: dr = δ f , while the control inputs are set to
be:

ur =
[
∆Fb ua f uar

]T . (25)

In this approach of the rollover problem the active suspensions generate two stabilizing roll
moments at the front and the rear, which can be considered as the effects of the suspension
forces

ua f = ( f f l − f f r)ℓw, uar = ( frl − frr)ℓw. (26)

The roll moments required are distinguished equally at the suspension components:

f f l =
ua f

2lw
, f f r = −

ua f

2lw
, (27)

frl =
uar

2lw
, frr = − uar

2lw
(28)

The third control input is the difference in brake forces between the left and right-hand sides
of the vehicle:

∆Fb = (Fbrl + d2Fb f l)− (Fbrr + d1Fb f r), (29)

where d1 and d2 are distances, which depend on the steering angle. In the implementation of
the controller means that the control action be distributed at the front and the rear wheels at
either of the two sides.
The differential equations depend on the forward velocity v and the adhesion coefficient µ of
the vehicle nonlinearly. It is assumed that the forward velocity and the adhesion coefficient
are available, i.e. these parameters are estimated on-line by using the on-board sensors. A
grey-box identification method based on an observer design was proposed in Gáspár et al.
(2006). The scheduling vector ρr is selected with four scheduling variables

ρr =
[
ρ1 ρ2 ρ3 ρ4

]
(30)

with ρ1 = µ,ρ2 =
µ
v ,ρ3 =

µ
v2 and ρ4 =

1
v .

3. Supervisory global control

The control design for suspension system and rollover prevention is performed on a full-
car vehicle model. When a fault occurs in the active suspension system, its role is assumed
by the active brake.The orchestration of the two independent subsystems, i.e. the suspension
subsystem and active brake, respectively, should be solved by a dedicated mechanism in order
to guarantee a desired level of the required performance.
The detection of an imminent rollover is based on the monitoring of the lateral load transfers
for both axles. The lateral load transfer can be given:

∆Fz,i =
kt,iφt,i

lw
, (31)

where i denotes the front and rear axles. They can be normalized in such a way that the load
transfer is divided by the total axle load:

Ri =
∆Fz,i
Fz,i

. (32)

The normalized load transfer Ri value corresponds to the largest possible load transfer. If
the Ri takes on the value ±1 then the inner wheels in the bend lift off. The limit cornering
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Fig. 2. Yaw and roll model of the vehicle

longitudinal directions are as follows:
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v
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v
.

The equations (18)-(22) can be expressed in the state space representation form. The system
states are the side slip angle of the sprung mass β, the yaw rate ψ̇, the roll angle φ, the roll rate
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In this approach of the rollover problem the active suspensions generate two stabilizing roll
moments at the front and the rear, which can be considered as the effects of the suspension
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ua f

2lw
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ua f

2lw
, (27)

frl =
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2lw
, frr = − uar

2lw
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3. Supervisory global control

The control design for suspension system and rollover prevention is performed on a full-
car vehicle model. When a fault occurs in the active suspension system, its role is assumed
by the active brake.The orchestration of the two independent subsystems, i.e. the suspension
subsystem and active brake, respectively, should be solved by a dedicated mechanism in order
to guarantee a desired level of the required performance.
The detection of an imminent rollover is based on the monitoring of the lateral load transfers
for both axles. The lateral load transfer can be given:

∆Fz,i =
kt,iφt,i

lw
, (31)

where i denotes the front and rear axles. They can be normalized in such a way that the load
transfer is divided by the total axle load:

Ri =
∆Fz,i
Fz,i

. (32)

The normalized load transfer Ri value corresponds to the largest possible load transfer. If
the Ri takes on the value ±1 then the inner wheels in the bend lift off. The limit cornering
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condition occurs when the load on the inside wheels has dropped to zero and all the load has
been transferred onto the outside wheels. Let

R = max{R f , Rr}. (33)

The roll angles of the unsprung masses have an important role in the monitoring of rollovers,
since the calculation of the normalized load transfers is based on these signals.
In the control design both the rollover and the suspension problems are taken into considera-
tion. In this combined structure a new weighting strategy is proposed in order to meet several
performance demands, such as enhancing passenger comfort, increasing rollover stability and
road holding, guaranteing suspension working space and reducing energy consumption. In
the rollover problem the performance outputs for control design are the lateral acceleration,
the lateral load transfers at the front and the rear, and the control inputs:

zr =
[
ay ∆Fz, f ∆Fz,r ur

]T . (34)

In the suspension problem the performance outputs

zs =
[
az zs f zsr us

]T (35)

for control design are the passenger comfort (i.e. heave acceleration), the suspension deflec-
tions and the control inputs. The measured outputs are the lateral acceleration of the sprung
mass, the derivative of the roll angle and the suspension deflections at the suspension compo-
nents: yr =

[
ay φ̇

]T and ys =
[
zs f zsr

]T .
In order to achieve the desired reconfiguration of the redundant subsystems a straight so-
lution would be to apply merely a switching strategy that would change between the two
subsystems in emergency, i.e. when an imminent rollover occur. By applying a switching
strategy based on a suitable threshold imposed for the value of the normalized load transfer
R (switching surface) would be a reliable solution for the design of the individual controllers.
However, it would generate the problem of the transients during the switching instances, i.e.
the required performance level should be imposed by special techniques in that case.

Fig. 3. The closed-loop interconnection structure for the control design

Instead of considering a switching surface the reconfiguration of the control structure is solved
by an LPV strategy, which is presented in this section. The values of the the normalized load

transfer R are used as a scheduling variable for a LPV design where a guaranteed performance
level during the reconfiguration is achieved through the design process – through a common
Lyapunov function. This is possible by using a suitable weighting strategy where the critical
parameter R schedules the performance weight functions.
The closed-loop interconnection structure for rollover prevention and for suspension design
are shown in Figure 3. The purpose of the weighting functions is to keep the lateral accel-
eration, the lateral load transfers, the heave acceleration, the suspension deflection and the
control inputs small over the desired frequency range. The weighting functions chosen for
performance outputs can be considered as penalty functions: they are selected large in a fre-
quency range where small signals are desired, and small where larger performance outputs
can be tolerated.
The weighting function for the lateral acceleration, for the heave acceleration and for the sus-
pension deflection are selected in the following way:

Wp,ay = φay(R)
A1(

s
Ta

+ 1)

( s
Tb

+ 1)
, (36)

Wp,az =
A2(

s
Tc

+ 1)

( s
Td

+ 1)
, (37)

Wp,zs =
A3(

s
Te

+ 1)

( s
Tf

+ 1)
, (38)

respectively, with time constants Ti and proportional coefficients Ai. The weighting functions
Wp,us and Wp,ur for the control inputs guarantee the limitation of the control forces.
For safety the weighting function Wp,ay for the lateral acceleration plays the most important
role. The parameter-dependent gain φay(R) in the weighting function Wp,ay is selected as a
function of parameter R:

φay(R) =

⎧⎨
⎩

0 if ∣R∣ < Ra
(∣R∣−Ra)
(Rb−Ra)

if Ra ≤ ∣R∣ ≤ Rb

1 if ∣R∣ > Rb

(39)

where Ra, Rb are pre-defined and constants in fault-free case.
The gain φay is increased in order to minimize the lateral acceleration and prevent the rollover
of the vehicle. As the gain φay increases the lateral acceleration decreases, since the active
brake influences the lateral acceleration directly. Ra defines the critical status when the vehicle
is in an emergency. Parameter Rb shows how fast the control should focus on minimizing the
lateral acceleration. In the lower range of R the gain φay must be small, and in the upper
range of R the gains must be large. Consequently, the weighting functions must be selected
in such a way that they minimize the lateral load transfers in emergency situations. However
in normal cruising situations the control do not focus on the lateral load transfers since the
weight is small.
The suspension system reduces the rollover risk when ∣R∣ ≥ Ra. The suspension forces are
modified by the fictitious forces coming from the stabilizing moments, see equation In an
emergency, i.e. when ∣ρR∣ ≥ Rs, the suspension system must reduce the rollover risk and
guaranteeing passenger comfort (and pitch angle) is no longer a priority. The suspension
forces are modified by the fictitious forces coming from the stabilizing moments, see equation
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R (switching surface) would be a reliable solution for the design of the individual controllers.
However, it would generate the problem of the transients during the switching instances, i.e.
the required performance level should be imposed by special techniques in that case.
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Instead of considering a switching surface the reconfiguration of the control structure is solved
by an LPV strategy, which is presented in this section. The values of the the normalized load

transfer R are used as a scheduling variable for a LPV design where a guaranteed performance
level during the reconfiguration is achieved through the design process – through a common
Lyapunov function. This is possible by using a suitable weighting strategy where the critical
parameter R schedules the performance weight functions.
The closed-loop interconnection structure for rollover prevention and for suspension design
are shown in Figure 3. The purpose of the weighting functions is to keep the lateral accel-
eration, the lateral load transfers, the heave acceleration, the suspension deflection and the
control inputs small over the desired frequency range. The weighting functions chosen for
performance outputs can be considered as penalty functions: they are selected large in a fre-
quency range where small signals are desired, and small where larger performance outputs
can be tolerated.
The weighting function for the lateral acceleration, for the heave acceleration and for the sus-
pension deflection are selected in the following way:
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respectively, with time constants Ti and proportional coefficients Ai. The weighting functions
Wp,us and Wp,ur for the control inputs guarantee the limitation of the control forces.
For safety the weighting function Wp,ay for the lateral acceleration plays the most important
role. The parameter-dependent gain φay(R) in the weighting function Wp,ay is selected as a
function of parameter R:

φay(R) =
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0 if ∣R∣ < Ra
(∣R∣−Ra)
(Rb−Ra)

if Ra ≤ ∣R∣ ≤ Rb

1 if ∣R∣ > Rb

(39)

where Ra, Rb are pre-defined and constants in fault-free case.
The gain φay is increased in order to minimize the lateral acceleration and prevent the rollover
of the vehicle. As the gain φay increases the lateral acceleration decreases, since the active
brake influences the lateral acceleration directly. Ra defines the critical status when the vehicle
is in an emergency. Parameter Rb shows how fast the control should focus on minimizing the
lateral acceleration. In the lower range of R the gain φay must be small, and in the upper
range of R the gains must be large. Consequently, the weighting functions must be selected
in such a way that they minimize the lateral load transfers in emergency situations. However
in normal cruising situations the control do not focus on the lateral load transfers since the
weight is small.
The suspension system reduces the rollover risk when ∣R∣ ≥ Ra. The suspension forces are
modified by the fictitious forces coming from the stabilizing moments, see equation In an
emergency, i.e. when ∣ρR∣ ≥ Rs, the suspension system must reduce the rollover risk and
guaranteeing passenger comfort (and pitch angle) is no longer a priority. The suspension
forces are modified by the fictitious forces coming from the stabilizing moments, see equation
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(27). The forces at the front and the rear in both sides are the following:

f f l,new = f f l +
ur f

2lw
, f f r,new = f f r −

ur f

2lw
, (40)

frl,new = frl +
urr

2lw
, frr,new = frr −

urr

2lw
. (41)

In the event of a fault the range of the operation of the brake system must be extended and
the wheels are decelerated gradually rather than rapidly if the normalized load transfer has
reached its critical value. A small value of Ra corresponds to activating the brake system early
and gradually, whereas a large value of Ra corresponds to activating the brake system rapidly.
Thus, the design parameter Ra is chosen to be scheduled on fault information ρ f .

Ra,new = Ra −
ρ f

α
(42)

where ρ f is the normalized value of the fault information and α is a constant factor.
Introducing the health information about the suspension subsystem (through the fault signal
ρ f ) in the control design has the benefit in reducing the brake actuation during operational
time. This is achieved by a varying threshold of the activation level, which is Ra for the
fault–free case and it decreases only as an exception when a loss of effectiveness/fault occur
in contrast to the conservative setting Ra − 1

α when no information about the suspension is
supposed to be available.
The uncertainties of the nominal model are represented by the weighting function Wr in such
a way that in the low frequency domain the uncertainties are about 10% and in the upper
frequency domain they are up to 100%. The input scaling weights Wδ and Ww normalize
the disturbances to the maximum expected command. Wn,ay, Wn,φ̇, Wn,ψ̇ and Wn,sij take into
account the sensor noises in the control design.
In order to describe the control objective, the parameter dependent augmented plant P(�)
must be built up using the closed-loop interconnection structure. The augmented plant P(�)
includes the parameter dependent vehicle dynamics and the weighting functions.

[
z̃
y

]
=

[
P11(�) P12(�)
P21(�) P22(�)

][
w
u

]
, (43)

where w =
[
d n dm

]
and z̃ =

[
z em

]
. The signals dm, em are the output of the uncertainty

block ∆m and its input, respectively. � contains both the scheduling variables from the vehicle
modeling and the monitoring variables. The closed-loop system M(�) is given by a lower
linear fractional transformation (LFT) structure:

M(�) = ℱℓ(P(�),K(�)), (44)

where K(�) depends on the scheduling parameter �. The purpose of the control design is to
robustly minimize the induced ℒ2 norm of a LPV system M(�) with zero initial conditions,
which is given by

inf
K

sup
�∈ℱ�

sup
∥w∥2 ∕=0,w∈ℒ2

∥z̃∥2
∥w∥2

(45)

The solution of an LPV problem is based on the set of infinite dimensional LMIs being satisfied
for all ρ ∈ ℱ� , thus it is a convex problem, Rough & Shamma (2000); Wu (2001). In practice,
this problem is set up by gridding the parameter space and solving the set of LMIs that hold on
the subset of ℱ� , see Packard & Balas (1997). The LPV control is constructed by the Parameter
Dependent Lyapunov Functions (PDLF) in which the conservatism of the control design is
reduced.
To specify the scheduled performance weights for the LPV design the scheduling variables
are defined through a lookup-table given on a suitable grid. The grid is determined by v, µ, R
and ρ f as follows: v = [20, . . . , 120]kph, µ = [0.1, . . . , 1.1] and R = [0, Ra, Rb, 1]. The scheduling
parameter ρ f , which is the fault information provided by the FDI filter, can be taken from
interval ρ f = [0, 1]. The zero value of ρ f corresponds to the non-faulty operation and the
value 1 to the full hydraulic actuator failure. The gridding reflects the qualitative changes of
the performance weights, i.e. the scheduling variables. The robust stability and performance
are guaranteed by the LPV design process, see Packard & Balas (1997); Wu (1995).

4. Design of tracking control

The starting point for the tracking control design of the active suspension actuator is a quarter
car LPV model of the suspension system augmented with a nonlinear actuator dynamics. The
actuator is a nonlinear switched system (bimodal system) where the switch is triggered by the
sign of the damper velocity.
In Figure 4 a two-degree-of-freedom quarter-car model is shown. The body mass ms repre-
sents the sprung mass, which corresponds to one of the corners of the vehicle, and the un-
sprung mass mu represents the wheel at one corner. The parameters kt, ks, bs are the tyre
stiffness, the suspension stiffness, and the damping rate of the suspension, respectively. The
control signal F is generated by the actuator. The disturbance d is caused by road irregulari-
ties.

Fig. 4. Quarter-car model

The force equations of the quarter-car model are:

Fms = Fk + Fb − F, (46)

Fmu = −Fk − Fb − Ft + F. (47)
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where ρ f is the normalized value of the fault information and α is a constant factor.
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time. This is achieved by a varying threshold of the activation level, which is Ra for the
fault–free case and it decreases only as an exception when a loss of effectiveness/fault occur
in contrast to the conservative setting Ra − 1

α when no information about the suspension is
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The uncertainties of the nominal model are represented by the weighting function Wr in such
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for all ρ ∈ ℱ� , thus it is a convex problem, Rough & Shamma (2000); Wu (2001). In practice,
this problem is set up by gridding the parameter space and solving the set of LMIs that hold on
the subset of ℱ� , see Packard & Balas (1997). The LPV control is constructed by the Parameter
Dependent Lyapunov Functions (PDLF) in which the conservatism of the control design is
reduced.
To specify the scheduled performance weights for the LPV design the scheduling variables
are defined through a lookup-table given on a suitable grid. The grid is determined by v, µ, R
and ρ f as follows: v = [20, . . . , 120]kph, µ = [0.1, . . . , 1.1] and R = [0, Ra, Rb, 1]. The scheduling
parameter ρ f , which is the fault information provided by the FDI filter, can be taken from
interval ρ f = [0, 1]. The zero value of ρ f corresponds to the non-faulty operation and the
value 1 to the full hydraulic actuator failure. The gridding reflects the qualitative changes of
the performance weights, i.e. the scheduling variables. The robust stability and performance
are guaranteed by the LPV design process, see Packard & Balas (1997); Wu (1995).

4. Design of tracking control

The starting point for the tracking control design of the active suspension actuator is a quarter
car LPV model of the suspension system augmented with a nonlinear actuator dynamics. The
actuator is a nonlinear switched system (bimodal system) where the switch is triggered by the
sign of the damper velocity.
In Figure 4 a two-degree-of-freedom quarter-car model is shown. The body mass ms repre-
sents the sprung mass, which corresponds to one of the corners of the vehicle, and the un-
sprung mass mu represents the wheel at one corner. The parameters kt, ks, bs are the tyre
stiffness, the suspension stiffness, and the damping rate of the suspension, respectively. The
control signal F is generated by the actuator. The disturbance d is caused by road irregulari-
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Fig. 4. Quarter-car model

The force equations of the quarter-car model are:

Fms = Fk + Fb − F, (46)

Fmu = −Fk − Fb − Ft + F. (47)
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The suspension damping force Fb is given by (9), the suspension spring force Fk is defined by
(10) while the tire force Ft is given by (11) and F is the force of the actuator, respectively.
The state space representation of the quarter-car model can be formalized with the state vector
x =

[
x1 x2 x3 x4

]T , where x1 and x2 denote the vertical displacement of the sprung mass
and the unsprung mass, respectively, and x3, x4 denote their derivatives.

ẋ3 =
1

ms
(rk(x2 − x1) + rb(x4 − x3) + bnl

s ρb

√
ρb(x4 − x3)− F), (48)

ẋ4 =
1

mu
(−rk(x2 − x1)− rb(x4 − x3)− kt(x2 − d)− bnl

s ρb

√
ρb(x4 − x3) + F), (49)

where rb = bl
s − bsym

s ρb and rk = kl
s + knl

s ρk. Here ρb = sgn(x4 − x3) and ρk = (x2 − x1)
2 are

selected as scheduling variables.
An active actuator which generates the necessary force for the suspension system is a four-
way valve-piston system, in general. Denoting by z the relative velocity one has F = APPL,
where AP is the area of the piston and PL is the pressure drop across the piston with respect
to the front and rear suspensions. The derivative of PL is given by

ṖL = −βPL + αAPz + γQ, (50)

in which Q = Q0xv is the hydraulic load flow (with the notation Q0 = sgn(r)
√
∣r∣ and r = PS −

sgn(xv)PL, moreover, α, β, γ are constants, PS is the supply pressure and xv is the displacement
of the spool valve. The cylinder velocity acts as a coupling from the position output of the
cylinder to the pressure differential across the piston. It is considered a feedback term, which
has been analyzed by Alleyne & Liu (2000).
The displacement of the spool valve is controlled by the input to the servo-valve u:

ẋv =
1
τ
(−xv + u) ,

where τ is a time constant. Let x5 and x6 denote PL and xv, respectively. Then, the actuator
model can be written separately as

ẋ5 = −βx5 + αAPz + γQ0(x5, x6)x6, (51)

ẋ6 = − 1
τ

x6 +
1
τ

ua. (52)

For both actuators it is hard to provide directly the command signals due to the high nonlin-
earities of these subsystems. Usually the controllers provide a force demand and in a second,
postprocessing step the actual actuator commands are derived, see Alleyne & Hedrick (1995).
The tracking control algorithm is derived by using a backstepping method applied for each of
the modes.
In order to show the principle of the backstepping method the notations of van der Schaft
(2000) are used. The model of the whole suspension and actuator system with zero distur-
bance are written in the following form

ζ̇ = Aζ + Bξ1, (53)

ξ̇1 = a1(ζ,ξ1) + b1(ξ1)ξ2, (54)

ξ̇2 = a2(ξ2) + b2u, (55)

where ζ is the state vector of the quarter-car suspension model, ξ1 and ξ2 are the state variables
of the actuator dynamics and furthermore

a1(ζ,ξ1) = −βξ1 + αAPz,

b1(ξ1) =

{
γ
√

PS − ξ1, ξ2 ≥ 0
γ
√

PS + ξ1, ξ2 < 0 ,

a2(ξ2) = − 1
τ

ξ2, b2 =
1
τ

.

Let us assume that there exists a smooth feedback function K(ζ) (possibly in LPV form) such
that the closed loop system

ζ̇ = Aζ + BK(ζ) (56)

is asymptotically stable with control Lyapunov function V(ζ). The dynamics of (53) corre-
sponds to the high-level suspension system (13). Therefore, the feedback function K(ζ) corre-
sponds to the pressure demand required by the high-level control, i.e. K(ζ) = PL,dem = ξ1,dem.
In what follows ξ2,dem = ξv,dem denotes the demand of the spool valve displacement.
The backstepping design for the actuator subsystem can be performed in two steps. In the first
step, let us consider ξ2,dem as a virtual input and y1 = ξ1 − K(ζ) as a virtual output. Since ξ1 is
not a manipulable input, we would like to construct a feedback that guarantees the tracking
of K(ζ) with ξ1. It is reasonable therefore to define the tracking error to be linear and stable,
i.e., ẏ1 = −k1y1, k1 > 0. Using (53)–(54) the desired time-function for ξ2,dem can be computed
as a nonlinear feedback of the form

ξ2,dem =
1

b1(ξ1)
[−a1(ζ,ξ1) + K̇(ζ)− k1(ξ1 − K(ζ))]. (57)

In the second step, the desired input is u while the (virtual) output is defined as y2 = ξ2 −
ξ2,dem. For the tracking error, a stable linear dynamics is prescribed: ẏ2 =−k2y2, k2 > 0. Using
(53)–(55), we can now express the physically manipulable actuator input u as a function of ζ,
ξ1 and ξ2 in the following form

u =
1
b2

[−a2(ξ2) + ξ̇2,dem]. (58)

By applying the above design, the closed loop system will be asymptotically stable with con-
trol Lyapunov function S(ζ) = V(ζ) + 1

2 y2
1 +

1
2 y2

2 Sepulchre et al. (1997). It is important to
note that the obtained feedback law (58) is a state-dependent switching function because of
the switching term b1(ξ1) (see (56)) and it will be shown later that ξ2,dem can be approximated
by a smooth function without affecting the validity of the method.
Since the actual feedback law generated by the LPV controller is a rather complicated function
of the state variables, and we do not know the road excitation disturbances in advance, the
above controller design procedure cannot be implemented in its original theoretical form.
Therefore in what follows we will consider a more realistic assumption, when the reference
for ξ1 is computed by the high-level LPV controller, and for the trajectory tracking the time
derivatives of the reference signals are computed numerically.
The reference for the pressure x5, which is is denoted by x5,dem, is computed by the high level
LPV controller and for the trajectory tracking the time derivatives of the reference signals are
computed numerically. The required tracking error dynamics is defined as

ẋ5 − ẋ5,dem = −k1(x5 − x5,dem) (59)
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The suspension damping force Fb is given by (9), the suspension spring force Fk is defined by
(10) while the tire force Ft is given by (11) and F is the force of the actuator, respectively.
The state space representation of the quarter-car model can be formalized with the state vector
x =

[
x1 x2 x3 x4

]T , where x1 and x2 denote the vertical displacement of the sprung mass
and the unsprung mass, respectively, and x3, x4 denote their derivatives.

ẋ3 =
1

ms
(rk(x2 − x1) + rb(x4 − x3) + bnl

s ρb

√
ρb(x4 − x3)− F), (48)

ẋ4 =
1

mu
(−rk(x2 − x1)− rb(x4 − x3)− kt(x2 − d)− bnl

s ρb

√
ρb(x4 − x3) + F), (49)

where rb = bl
s − bsym

s ρb and rk = kl
s + knl

s ρk. Here ρb = sgn(x4 − x3) and ρk = (x2 − x1)
2 are

selected as scheduling variables.
An active actuator which generates the necessary force for the suspension system is a four-
way valve-piston system, in general. Denoting by z the relative velocity one has F = APPL,
where AP is the area of the piston and PL is the pressure drop across the piston with respect
to the front and rear suspensions. The derivative of PL is given by

ṖL = −βPL + αAPz + γQ, (50)

in which Q = Q0xv is the hydraulic load flow (with the notation Q0 = sgn(r)
√
∣r∣ and r = PS −

sgn(xv)PL, moreover, α, β, γ are constants, PS is the supply pressure and xv is the displacement
of the spool valve. The cylinder velocity acts as a coupling from the position output of the
cylinder to the pressure differential across the piston. It is considered a feedback term, which
has been analyzed by Alleyne & Liu (2000).
The displacement of the spool valve is controlled by the input to the servo-valve u:

ẋv =
1
τ
(−xv + u) ,

where τ is a time constant. Let x5 and x6 denote PL and xv, respectively. Then, the actuator
model can be written separately as

ẋ5 = −βx5 + αAPz + γQ0(x5, x6)x6, (51)

ẋ6 = − 1
τ

x6 +
1
τ

ua. (52)

For both actuators it is hard to provide directly the command signals due to the high nonlin-
earities of these subsystems. Usually the controllers provide a force demand and in a second,
postprocessing step the actual actuator commands are derived, see Alleyne & Hedrick (1995).
The tracking control algorithm is derived by using a backstepping method applied for each of
the modes.
In order to show the principle of the backstepping method the notations of van der Schaft
(2000) are used. The model of the whole suspension and actuator system with zero distur-
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ζ̇ = Aζ + Bξ1, (53)

ξ̇1 = a1(ζ,ξ1) + b1(ξ1)ξ2, (54)

ξ̇2 = a2(ξ2) + b2u, (55)

where ζ is the state vector of the quarter-car suspension model, ξ1 and ξ2 are the state variables
of the actuator dynamics and furthermore

a1(ζ,ξ1) = −βξ1 + αAPz,

b1(ξ1) =

{
γ
√

PS − ξ1, ξ2 ≥ 0
γ
√

PS + ξ1, ξ2 < 0 ,

a2(ξ2) = − 1
τ

ξ2, b2 =
1
τ

.

Let us assume that there exists a smooth feedback function K(ζ) (possibly in LPV form) such
that the closed loop system

ζ̇ = Aζ + BK(ζ) (56)

is asymptotically stable with control Lyapunov function V(ζ). The dynamics of (53) corre-
sponds to the high-level suspension system (13). Therefore, the feedback function K(ζ) corre-
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step, let us consider ξ2,dem as a virtual input and y1 = ξ1 − K(ζ) as a virtual output. Since ξ1 is
not a manipulable input, we would like to construct a feedback that guarantees the tracking
of K(ζ) with ξ1. It is reasonable therefore to define the tracking error to be linear and stable,
i.e., ẏ1 = −k1y1, k1 > 0. Using (53)–(54) the desired time-function for ξ2,dem can be computed
as a nonlinear feedback of the form

ξ2,dem =
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b1(ξ1)
[−a1(ζ,ξ1) + K̇(ζ)− k1(ξ1 − K(ζ))]. (57)

In the second step, the desired input is u while the (virtual) output is defined as y2 = ξ2 −
ξ2,dem. For the tracking error, a stable linear dynamics is prescribed: ẏ2 =−k2y2, k2 > 0. Using
(53)–(55), we can now express the physically manipulable actuator input u as a function of ζ,
ξ1 and ξ2 in the following form

u =
1
b2

[−a2(ξ2) + ξ̇2,dem]. (58)

By applying the above design, the closed loop system will be asymptotically stable with con-
trol Lyapunov function S(ζ) = V(ζ) + 1
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2 Sepulchre et al. (1997). It is important to
note that the obtained feedback law (58) is a state-dependent switching function because of
the switching term b1(ξ1) (see (56)) and it will be shown later that ξ2,dem can be approximated
by a smooth function without affecting the validity of the method.
Since the actual feedback law generated by the LPV controller is a rather complicated function
of the state variables, and we do not know the road excitation disturbances in advance, the
above controller design procedure cannot be implemented in its original theoretical form.
Therefore in what follows we will consider a more realistic assumption, when the reference
for ξ1 is computed by the high-level LPV controller, and for the trajectory tracking the time
derivatives of the reference signals are computed numerically.
The reference for the pressure x5, which is is denoted by x5,dem, is computed by the high level
LPV controller and for the trajectory tracking the time derivatives of the reference signals are
computed numerically. The required tracking error dynamics is defined as

ẋ5 − ẋ5,dem = −k1(x5 − x5,dem) (59)
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with a chosen positive constant parameter k1.
Then the reference x6,dem is given by

x6,demγ
√

PS − sgn(x6,dem)x5 = Ψ(x5, x5,dem,z), (60)

i.e.

x6,dem =

⎧⎨
⎩

Ψ(x5,x5,dem ,z)
γ
√

PS−x5
, x6,dem ≥ 0

Ψ(x5,x5,dem ,z)
γ
√

PS+x5
x6,dem < 0

with the notation Ψ(x5,dem,z) = βx5 − αApz + ẋ5,dem − k1(x5 − x5,dem). Note that while Ψ is a
smooth function, by taking the time derivative of both sides of (60) one has

ẋ6,dem =

⎧⎨
⎩

Ψ̇(x5,dem ,z)
γ
√

PS−x5
+

ẋ5,dem x6,dem
2γ∣PS−x5∣ , x6,dem > 0

Ψ̇(x5,dem ,z)
γ
√

PS+x5
− ẋ5,dem x6,dem

2γ∣PS+x5∣ x6,dem < 0

i.e., x6,dem in general is not smooth – it is continuous but not differentiable. However it can
be arbitrary approximated by a smooth function x̄6,dem for which tacking the tracking error
dynamics

ẋ6 − ˙̄x6,dem = −k2(x6 − x̄6,dem). (61)

with a chosen positive constant parameter k2 is meaningful. Moreover this x̄6,dem can be cho-
sen such that x̄6,dem ∕= x6,dem only on a small neighborhood of the origin (the discontinuity
point of ẋ6,dem), e.g. by taking an expression on ∣Ψ∣ ≤ ε linear in Ψ, i.e. x̄6,dem = βΨ with a
suitable β. Since x6,dem should satisfy (60) this choice does not affect the values of the desired
x5 considerably.
Finally, the following expression for the physical input is deduced:

ua = x6 + τ ˙̄x6,dem − τk2(x6 − x6,dem). (62)

In order to practically implement the control law, we need to compute the time derivatives
of x5,dem and x6,dem, which can be done in a number of ways depending on the measurement
noise conditions and the required precision, for details see Gáspár et al. (2008).

5. Design of the FDI filter

Significant research results have been published for the general FDI problem and several
methods have been proposed, e.g. the parity space approach, the multiple model method,
detection filter design using a geometric approach, or the dynamic inversion based detection,
see Massoumnia (1986); Gertler (1997); Szigeti et al. (2001). Most of the design approaches
refer to linear, time-invariant (LTI) systems, but references to some nonlinear cases are also
found in the literature, see Stoustrup & Niemann (1998); Chen & Patton (1999). An ℋ∞ ap-
proach to design a fault detection and isolation gain-scheduled filter for LPV systems was
presented by Abdalla et al. (2001); Bokor & Balas (2004). There are also numerous papers
dealing with the design of reconfigurable controls, which include the design of FDI filters,
the design of reconfigurable controllers and the design of reconfiguration mechanisms. Ap-
plications of reconfigurable control systems are found in different fields, see e.g. Fischer &
Isermann (2004); Kanev & Verhaegen (2000).

Possible faults of the actuators (loss of effectiveness) can be detected by reconstructing the
actual suspension forces. Having measured the signals y1 = ẋ3,y2 = ẋ4 and y3 = x2 − x1 an
inversion based detection filter is proposed, Balas et al. (2004); Szabó et al. (2003). In the
construction of the filter the first step is to express F from (48) and in these expression we plug
in the known values yi:

F = ∣z∣+ bnl
s ρb

√
∣z∣+ rky3 − msy1. (63)

In this expression the value of the relative velocity z is not measured. The road disturbance is
an unknown input signal but from the equations (48), (49) one has

msẋ3 + muẋ4 = −kt(x2 − d). (64)

By plugging back the obtained expressions in the original equations one has the system ẋ3
= rk

ms
(x2 − x1) - rk

ms
y3 + y1 and ẋ4 =- rk

mu
(x2 − x1) + rk

mu
y3 + y2, where the relative velocity is not

measured. The resulting LPV system

ż = −rkmez + rkmey3 + y2 − y1, (65)

with me =
mu+ms
mums

will be observable.
For active actuators, since the real actuators might present a saturation effect, in addition to
compare the reconstructed forces with the force demands provided by the robust LPV con-
trollers it is necessary to check, if the actual forces are lower then those corresponding to the
saturation level of the actuators.
To obtain the final fault detection filter equations (51) and (52) are used as:

˙̃x5 = −βx̃5 + αAPẑ + γQ0,nom(F̂)x̃6, (66)

˙̃x6 = − 1
τnom

x̃6 +
1

τnom
ua, (67)

where ẑ and F̂ are the estimated damper velocity and damper force values, respectively. A
possible actuator fault affects the terms Q0 through a modified value of Ps and the time con-
stant τ, respectively. The nominal values of these parameters (i.e. for the fault free case) are
denoted by the subscript nom.
For the fault free case one should have e5 = x5 − x̃5 ≈ 0 and e6 = x6 − x̃6 ≈ 0, respectively.
Since the initial conditions are not known, an observer need to be constructed for (65) and
(66), (67) respectively, to test these conditions. For a Leuenberger–type observer a design
method for bimodal systems was reported in Juloski et al. (2007). For this case, however,
the nonsmooth term Q0 – which in turn makes the system to be bimodal – is considered as
scheduling variable. Hence a more conventional LPV observer can be constructed.
For a LPV system that depends affinely on the scheduling variables an LPV observer gain can
be designed using LMI techniques: let us recall that an LPV system is said to be quadratically
stable if there exist a matrix P = PT > 0 such that A(ρ)T P + PA(ρ) < 0 for all the parameters
ρ. A necessary and sufficient condition for a system to be quadratically stable is that this
condition holds for all the corner points of the parameter space, i.e., one can obtain a finite
system of linear matrix inequalities (LMIs) that have to be fulfilled for A(ρ) with a suitable
positive definite matrix P, see Gahinet (1996).
In order to obtain a quadratically stable observer the LMI

AT
o (ρ)P + PAo(ρ) < 0 (68)
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with a chosen positive constant parameter k1.
Then the reference x6,dem is given by
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with the notation Ψ(x5,dem,z) = βx5 − αApz + ẋ5,dem − k1(x5 − x5,dem). Note that while Ψ is a
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i.e., x6,dem in general is not smooth – it is continuous but not differentiable. However it can
be arbitrary approximated by a smooth function x̄6,dem for which tacking the tracking error
dynamics
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with a chosen positive constant parameter k2 is meaningful. Moreover this x̄6,dem can be cho-
sen such that x̄6,dem ∕= x6,dem only on a small neighborhood of the origin (the discontinuity
point of ẋ6,dem), e.g. by taking an expression on ∣Ψ∣ ≤ ε linear in Ψ, i.e. x̄6,dem = βΨ with a
suitable β. Since x6,dem should satisfy (60) this choice does not affect the values of the desired
x5 considerably.
Finally, the following expression for the physical input is deduced:

ua = x6 + τ ˙̄x6,dem − τk2(x6 − x6,dem). (62)

In order to practically implement the control law, we need to compute the time derivatives
of x5,dem and x6,dem, which can be done in a number of ways depending on the measurement
noise conditions and the required precision, for details see Gáspár et al. (2008).

5. Design of the FDI filter

Significant research results have been published for the general FDI problem and several
methods have been proposed, e.g. the parity space approach, the multiple model method,
detection filter design using a geometric approach, or the dynamic inversion based detection,
see Massoumnia (1986); Gertler (1997); Szigeti et al. (2001). Most of the design approaches
refer to linear, time-invariant (LTI) systems, but references to some nonlinear cases are also
found in the literature, see Stoustrup & Niemann (1998); Chen & Patton (1999). An ℋ∞ ap-
proach to design a fault detection and isolation gain-scheduled filter for LPV systems was
presented by Abdalla et al. (2001); Bokor & Balas (2004). There are also numerous papers
dealing with the design of reconfigurable controls, which include the design of FDI filters,
the design of reconfigurable controllers and the design of reconfiguration mechanisms. Ap-
plications of reconfigurable control systems are found in different fields, see e.g. Fischer &
Isermann (2004); Kanev & Verhaegen (2000).

Possible faults of the actuators (loss of effectiveness) can be detected by reconstructing the
actual suspension forces. Having measured the signals y1 = ẋ3,y2 = ẋ4 and y3 = x2 − x1 an
inversion based detection filter is proposed, Balas et al. (2004); Szabó et al. (2003). In the
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will be observable.
For active actuators, since the real actuators might present a saturation effect, in addition to
compare the reconstructed forces with the force demands provided by the robust LPV con-
trollers it is necessary to check, if the actual forces are lower then those corresponding to the
saturation level of the actuators.
To obtain the final fault detection filter equations (51) and (52) are used as:
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where ẑ and F̂ are the estimated damper velocity and damper force values, respectively. A
possible actuator fault affects the terms Q0 through a modified value of Ps and the time con-
stant τ, respectively. The nominal values of these parameters (i.e. for the fault free case) are
denoted by the subscript nom.
For the fault free case one should have e5 = x5 − x̃5 ≈ 0 and e6 = x6 − x̃6 ≈ 0, respectively.
Since the initial conditions are not known, an observer need to be constructed for (65) and
(66), (67) respectively, to test these conditions. For a Leuenberger–type observer a design
method for bimodal systems was reported in Juloski et al. (2007). For this case, however,
the nonsmooth term Q0 – which in turn makes the system to be bimodal – is considered as
scheduling variable. Hence a more conventional LPV observer can be constructed.
For a LPV system that depends affinely on the scheduling variables an LPV observer gain can
be designed using LMI techniques: let us recall that an LPV system is said to be quadratically
stable if there exist a matrix P = PT > 0 such that A(ρ)T P + PA(ρ) < 0 for all the parameters
ρ. A necessary and sufficient condition for a system to be quadratically stable is that this
condition holds for all the corner points of the parameter space, i.e., one can obtain a finite
system of linear matrix inequalities (LMIs) that have to be fulfilled for A(ρ) with a suitable
positive definite matrix P, see Gahinet (1996).
In order to obtain a quadratically stable observer the LMI
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o (ρ)P + PAo(ρ) < 0 (68)
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must hold for suitable K(ρ) and P = PT > 0, with Ao = A + KC. By introducing the auxiliary
variable L(ρ) = PK(ρ), one has to solve the following set of LMIs on the corner points of the
parameter space:

A(ρ)T P + PA(ρ)− CT L(ρ)T − L(ρ)C < 0. (69)

By solving these LMIs a suitable observer gain is obtained:

K(ρ) = P−1L(ρ). (70)

If e = ∣∣e5∣∣2 + ∣∣e6∣∣2 is greater than a given threshold, then a fault must be present in the
system and a fault signal is emitted to the higher level controller, used in the controller recon-
figuration process. The threshold level influences the fault-detection delay, i.e. high threshold
level corresponds to increased delay. However, due to disturbances, sensor noises and the
modeling uncertainties this level cannot be arbitrarily small and it is determined using engi-
neering knowledge.

6. Simulation example

In this section the operation of the integrated control is presented and analyzed through sim-
ulation examples.
In the first example the operation of the two-level controller is demonstrated. The controller,
which combines a high-level LPV controller and a low-level nonlinear controller, is built in
Matlab/Simulink software environment.
In the simulation example an upper-level controller is designed based on the LPV method,
which generates a required control force. The controlled systems are tested on a bad-quality
road, on which bumps of four different heights disturb the motion of the vehicle: the height of
the bumps are 6 cm, 4 cm, 2 cm and 4 cm, respectively. Between the bumps there are velocity-
dependent stochastic road excitations. The time responses of the road excitation, the heave
acceleration, the relative displacement and the control force in the front and left-hand-side are
illustrated in Figure 5. The bumps with extremely large amplitude cause large acceleration of
the sprung mass and large relative displacement between the two masses.
Thanks to the controller the effects of the road disturbances on the performances are accept-
able since the values of the performance signals tend to zero in a short time period. The
suspension problem is solved by the force defined by the controller in the upper-level.
Then the low-level controller is applied in order to track the designed force. The operation
of the force-tracking controller based on the backstepping method is illustrated in Figure 6.
In the control design the parameters are selected as k1 = 20 and k2 = 20. In the simulation
example it is assumed that the sampling time of the measured signals is selected Ts = 0.01 sec,
which corresponds to practice.
The illustrated signals are the pressure drop across the piston, the displacement of the spool
valve, the control input, the achieved force and the RMS of the force error. The achieved force
generated by the actuator tends to the required force. The RMS of the force error, see Figure 7,
shows that the generated force approximates the required force with high precision.
The second example illustrates the operation of the FDI filter applied to an active suspension
system. The dashed red line presents the required force designed by the control system. The
current force must be calculated by using the measured signals. A filter is used to calculate the
current force by using an inversion method and the measured signals, i.e. the accelerations
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Fig. 6. Analysis of the tracking properties using the backstepping method

of the sprung mass and the unsprung mass, and the relative displacement between the two
masses.
The reconstructed force is illustrated by the solid blue line in the upper plot of Figure 8. The
force is compared with the force produced by a fault free suspension system (dashed line).
The FDI filter also gives the signals depicted in blue in the lower plot of Figure 8, while the
red signal is the chosen threshold level expressed in a given percent of the desired force. Since
the obtained error level will be greater than this threshold, a fault signal is emitted indicating
a faulty actuator.
In the third example the operation of the fault-tolerant integrated control that uses the de-
signed FDI filter is illustrated. The vehicle performs a cornering maneuver with 70 km/h.



Active Suspension in Integrated Vehicle Control 99

must hold for suitable K(ρ) and P = PT > 0, with Ao = A + KC. By introducing the auxiliary
variable L(ρ) = PK(ρ), one has to solve the following set of LMIs on the corner points of the
parameter space:

A(ρ)T P + PA(ρ)− CT L(ρ)T − L(ρ)C < 0. (69)

By solving these LMIs a suitable observer gain is obtained:

K(ρ) = P−1L(ρ). (70)

If e = ∣∣e5∣∣2 + ∣∣e6∣∣2 is greater than a given threshold, then a fault must be present in the
system and a fault signal is emitted to the higher level controller, used in the controller recon-
figuration process. The threshold level influences the fault-detection delay, i.e. high threshold
level corresponds to increased delay. However, due to disturbances, sensor noises and the
modeling uncertainties this level cannot be arbitrarily small and it is determined using engi-
neering knowledge.

6. Simulation example

In this section the operation of the integrated control is presented and analyzed through sim-
ulation examples.
In the first example the operation of the two-level controller is demonstrated. The controller,
which combines a high-level LPV controller and a low-level nonlinear controller, is built in
Matlab/Simulink software environment.
In the simulation example an upper-level controller is designed based on the LPV method,
which generates a required control force. The controlled systems are tested on a bad-quality
road, on which bumps of four different heights disturb the motion of the vehicle: the height of
the bumps are 6 cm, 4 cm, 2 cm and 4 cm, respectively. Between the bumps there are velocity-
dependent stochastic road excitations. The time responses of the road excitation, the heave
acceleration, the relative displacement and the control force in the front and left-hand-side are
illustrated in Figure 5. The bumps with extremely large amplitude cause large acceleration of
the sprung mass and large relative displacement between the two masses.
Thanks to the controller the effects of the road disturbances on the performances are accept-
able since the values of the performance signals tend to zero in a short time period. The
suspension problem is solved by the force defined by the controller in the upper-level.
Then the low-level controller is applied in order to track the designed force. The operation
of the force-tracking controller based on the backstepping method is illustrated in Figure 6.
In the control design the parameters are selected as k1 = 20 and k2 = 20. In the simulation
example it is assumed that the sampling time of the measured signals is selected Ts = 0.01 sec,
which corresponds to practice.
The illustrated signals are the pressure drop across the piston, the displacement of the spool
valve, the control input, the achieved force and the RMS of the force error. The achieved force
generated by the actuator tends to the required force. The RMS of the force error, see Figure 7,
shows that the generated force approximates the required force with high precision.
The second example illustrates the operation of the FDI filter applied to an active suspension
system. The dashed red line presents the required force designed by the control system. The
current force must be calculated by using the measured signals. A filter is used to calculate the
current force by using an inversion method and the measured signals, i.e. the accelerations
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of the sprung mass and the unsprung mass, and the relative displacement between the two
masses.
The reconstructed force is illustrated by the solid blue line in the upper plot of Figure 8. The
force is compared with the force produced by a fault free suspension system (dashed line).
The FDI filter also gives the signals depicted in blue in the lower plot of Figure 8, while the
red signal is the chosen threshold level expressed in a given percent of the desired force. Since
the obtained error level will be greater than this threshold, a fault signal is emitted indicating
a faulty actuator.
In the third example the operation of the fault-tolerant integrated control that uses the de-
signed FDI filter is illustrated. The vehicle performs a cornering maneuver with 70 km/h.
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velocity. During the cornering maneuver the lateral acceleration increases and thus the roll
angle of unsprung masses also increases. The time response of the steering angle, the lat-
eral acceleration, the forward velocity and the normalized lateral load transfer at the rear are
depicted in Figure 9.
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Since the monitoring scheduling variable, i.e., the normalized lateral load transfer ρR increases
the suspension system generate stabilizing roll moment to balance the overturning moment.
However, the normalized lateral load transfer also exceeds the predefined critical value Ra

and the brake generated a force with which the direction of the vehicle slightly modified and
consequently the effect of the lateral force reduces. Figure 10 shows the control signals, i.e.
the braking force at the rear and all the suspension forces.
Then it is assumed that an actuator failure in the suspension system has already been detected
at the front and right. The time response of the control signals are also depicted in Figure 10.
The solid blue line illustrates the fault operation and the dashed red line illustrates the fault-
free case.
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It is observed that the normalized load transfer increases due to the reduced power of the
actuators. According to the detected actuator fault the brake is activated at a smaller value
of the critical normalized load transfer. Moreover, the duration of the required brake force is
longer in the case of a suspension fault. Because of the braking action the suspension system
generates the same forces (except in the fault component) as they are in the fault-free case.
In the fourth example the selection of Ra and Rb regarding the activation of the brake is critical.
If the brake is activated at a large Ra the probability of rollover increases. If the value Ra was
small, the brake would be activated very frequently. In case of a fault the selection of ρD also
has an important role. Finally, we shall examine the effects of varying the design parameter Ra
on the controlled system. In Figure 11 the peak lateral acceleration against forward velocity
is plotted during a vehicle maneuver. Rb is fixed at 0.95 and Ra varies. The dash-dot, dashed
and solid lines correspond to Ra = 0.7, Ra = 0.8 and Ra = 0.9 respectively. With Ra = 0.7 in the
controlled system there is a gradual brake control, whereas when Ra = 0.9, the brake system
is not used until the normalized load transfer ρR equals 0.9, and the response of the yaw-roll
model is the same as when only active suspensions are used. Thus the design parameters Ra
and Rb can be used to shape the nonlinear response characteristics of the controlled system.
In a non-faulty case, which means that suspension system is working well, it would be prefer-
able to choose Ra large. This corresponds to an active brake system that is not used for most
of the time and activated very rapidly when the normalized load transfer exceeds the critical
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velocity. During the cornering maneuver the lateral acceleration increases and thus the roll
angle of unsprung masses also increases. The time response of the steering angle, the lat-
eral acceleration, the forward velocity and the normalized lateral load transfer at the rear are
depicted in Figure 9.
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Since the monitoring scheduling variable, i.e., the normalized lateral load transfer ρR increases
the suspension system generate stabilizing roll moment to balance the overturning moment.
However, the normalized lateral load transfer also exceeds the predefined critical value Ra

and the brake generated a force with which the direction of the vehicle slightly modified and
consequently the effect of the lateral force reduces. Figure 10 shows the control signals, i.e.
the braking force at the rear and all the suspension forces.
Then it is assumed that an actuator failure in the suspension system has already been detected
at the front and right. The time response of the control signals are also depicted in Figure 10.
The solid blue line illustrates the fault operation and the dashed red line illustrates the fault-
free case.
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It is observed that the normalized load transfer increases due to the reduced power of the
actuators. According to the detected actuator fault the brake is activated at a smaller value
of the critical normalized load transfer. Moreover, the duration of the required brake force is
longer in the case of a suspension fault. Because of the braking action the suspension system
generates the same forces (except in the fault component) as they are in the fault-free case.
In the fourth example the selection of Ra and Rb regarding the activation of the brake is critical.
If the brake is activated at a large Ra the probability of rollover increases. If the value Ra was
small, the brake would be activated very frequently. In case of a fault the selection of ρD also
has an important role. Finally, we shall examine the effects of varying the design parameter Ra
on the controlled system. In Figure 11 the peak lateral acceleration against forward velocity
is plotted during a vehicle maneuver. Rb is fixed at 0.95 and Ra varies. The dash-dot, dashed
and solid lines correspond to Ra = 0.7, Ra = 0.8 and Ra = 0.9 respectively. With Ra = 0.7 in the
controlled system there is a gradual brake control, whereas when Ra = 0.9, the brake system
is not used until the normalized load transfer ρR equals 0.9, and the response of the yaw-roll
model is the same as when only active suspensions are used. Thus the design parameters Ra
and Rb can be used to shape the nonlinear response characteristics of the controlled system.
In a non-faulty case, which means that suspension system is working well, it would be prefer-
able to choose Ra large. This corresponds to an active brake system that is not used for most
of the time and activated very rapidly when the normalized load transfer exceeds the critical
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Fig. 11. Effect of parameter Ra on lateral acceleration

value determined by Ra. However, this would result in a large lateral acceleration until the
critical Ra is reached. This would be a small price for the stability of roll motion. Because until
the critical Ra has been reached only the active suspensions, which do not affect directly the
roll dynamics of the vehicle, are used.
On the other hand, if a hydraulic actuator fault occurs in the system it would be preferable
to choose Ra small. This corresponds to a combined control where the range of operation of
the brake system is extended and the wheels are decelerated gradually rather than rapidly if
the normalized load transfer has reached Ra. It is assumed that the actuator fault can occur
as a loss of effectiveness, i.e. its power is reduced by some percent. It means that both control
inputs are able to work simultaneously but the hydraulic actuator does not have maximum
performance. It is a reasonable assumption in many cases because the occurrence of the failure
indicates an effectiveness failure at an early stage. As a consequence, the design parameter Ra
can be chosen as a scheduling parameter based on the fault information.

7. Conclusions

In this paper an application of the Linear Parameter Varying method for the design of inte-
grated vehicle control systems has been presented, in which several active components has
been used in co-operation. In the control design besides performance specifications and un-
certainties, the fault information has been taken into consideration. By monitoring suitable
scheduling parameters in the LPV control, the reconfiguration of the control systems can be
achieved, conflict between performance demands can be avoided and faults (loss in effective-
ness) can be handled.
In the proposed scheme if a fault occurs in the active suspension system and it is detected by
the FDI filter, the active brake assumes the role of the active suspension to enhance rollover
prevention. A weighting strategy is applied in the closed-loop interconnection structure, in
which the normalized lateral load transfer and the residual output of the FDI filter play an
important role. A tracking controller and an FDI filter has been designed that provides the
reference signal for the low-level actuator design and it also constitutes the supervisor con-

troller for the reconfiguration. By using the LPV method the designed controller guarantees
the desired stability and performance demands of the closed–loop system.
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Gáspár, P., Szabó, Z., Szederkényi, G. & Bokor, J. (2008). Two-level controller design for an
active suspension system, Proceedings of the 16th Mediterranean Conference on Control
and Automation 2008, IEEE, Ajaccio-Corsica, France, pp. 232 – 237.



Active Suspension in Integrated Vehicle Control 103

Fig. 11. Effect of parameter Ra on lateral acceleration

value determined by Ra. However, this would result in a large lateral acceleration until the
critical Ra is reached. This would be a small price for the stability of roll motion. Because until
the critical Ra has been reached only the active suspensions, which do not affect directly the
roll dynamics of the vehicle, are used.
On the other hand, if a hydraulic actuator fault occurs in the system it would be preferable
to choose Ra small. This corresponds to a combined control where the range of operation of
the brake system is extended and the wheels are decelerated gradually rather than rapidly if
the normalized load transfer has reached Ra. It is assumed that the actuator fault can occur
as a loss of effectiveness, i.e. its power is reduced by some percent. It means that both control
inputs are able to work simultaneously but the hydraulic actuator does not have maximum
performance. It is a reasonable assumption in many cases because the occurrence of the failure
indicates an effectiveness failure at an early stage. As a consequence, the design parameter Ra
can be chosen as a scheduling parameter based on the fault information.

7. Conclusions

In this paper an application of the Linear Parameter Varying method for the design of inte-
grated vehicle control systems has been presented, in which several active components has
been used in co-operation. In the control design besides performance specifications and un-
certainties, the fault information has been taken into consideration. By monitoring suitable
scheduling parameters in the LPV control, the reconfiguration of the control systems can be
achieved, conflict between performance demands can be avoided and faults (loss in effective-
ness) can be handled.
In the proposed scheme if a fault occurs in the active suspension system and it is detected by
the FDI filter, the active brake assumes the role of the active suspension to enhance rollover
prevention. A weighting strategy is applied in the closed-loop interconnection structure, in
which the normalized lateral load transfer and the residual output of the FDI filter play an
important role. A tracking controller and an FDI filter has been designed that provides the
reference signal for the low-level actuator design and it also constitutes the supervisor con-

troller for the reconfiguration. By using the LPV method the designed controller guarantees
the desired stability and performance demands of the closed–loop system.

8. Acknowledgements

This work is supported by the Hungarian National Office for Research and Technology
through grants TECH 08 2/2-2008-0088 is gratefully acknowledged.
The effort was sponsored by the Air Force Office of Scientific Research, Air Force Material
Command, USAF, under the grant number FA8655-08-1-3016. The U.S Government is autho-
rized to reproduce and distribute reprints for Governmental purpose notwithstanding any
copyright notation thereon.

9. References

Abdalla, M., Nobrega, E. & Grigoriadis, K. (2001). Fault detection and isolation filter design
for linear parameter varying systems, Proceedings of the American Control Conference
2001, Vol. 5, IEEE, Arlington, VA, USA, pp. 3890–3895.

Alleyne, A. & Hedrick, J. (1995). Nonlinear adaptive control of active suspensions, IEEE Trans-
actions on Control Systems Technology 3(1): 94–101.

Alleyne, A. & Liu, R. (2000). A simplified approach to force control for electro-hydraulic
systems, Control Engineering Practice 8(12): 1347–1356.
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1. Introduction

Cyclic service queueing systems have a broad range of applications in communication sys-
tems. From legacy systems like the slotted ring networks and switching systems, to more
recent ones like optical burst assembly, Ethernet over SDH/SONET mapping and traffic ag-
gregation at the edge nodes, all may employ cyclic service as a means of providing fairness to
incoming traffic. This would require the server to switch to the next traffic stream after serving
one. This service can be exhaustive, in which all the packets in the queue are served before
the server switches to the next queue, or non-exhaustive, in which the server serves just one
packet (or in case of batch service, a group of packets) before switching to the next queue.
Most of the study on systems with cyclic service has been performed on queues of unlimited
size. Real systems always have finite buffers. In order to analyze real systems, we need to
model queues with finite capacity. The analysis of such systems is among the most compli-
cated as it is very difficult to obtain closed-form solutions to systems with finite capacity.
An important parameter in cyclic service queueing systems with finite capacity is the
switchover time, which is the time taken for the server to switch to a different queue after a
service completion. This is especially true for non-exhaustive cyclic service systems, in which
the server has to switch to the next queue after serving each packet. The switchover time is
usually very small as compared to the service time, and is generally ignored during analysis.
In such cases, the edge node can be modeled as a server, serving the various access nodes -
that can be modeled as queues - in a cyclic manner. Hence, we assume that on finding an
empty queue, the server will go to the next queue with a switchover rate of, say ε, but if the
queue is not empty, we ignore the switchover time and assume that the server will switch to
the next queue with rate µ after serving one packet in the queue.
While this generally led to quite accurate results in the past due to a large difference in ratios
between the service and switchover times, this might not be the case today as optical com-
munication systems are getting faster and faster. Thus the switchover time cannot always be
safely ignored as smaller differences between switchover times and service times may intro-
duce significant differences in the results. In order to analyze such systems, the switchover
process can be modeled as another phase in the service process.
The focus of this chapter is on the analysis of non-exhaustive cyclic service systems with finite
capacity using state space modeling technique. A brief summary on the work done to date,
in cyclic service systems is presented in Section 2, while some applications of such systems

6
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are discussed in Section 3. Analytical models of systems in which the switchover times can be
ignored during service are presented in Section 4, in which we start from a simple two-queue
system and generalize for an n-queue system. Analytical study of edge nodes that employ
non-exhaustive cyclic service to serve various incoming streams as a two stage process (serv-
ing and switchover) in which switchover times are not ignored during service is presented in
Section 5, followed by a detailed comparison of systems with and without switchover times in
Section 6. Scenarios in which switchover cannot be ignored are also discussed in this section.
Finally, the results are summarized in Section 7.

2. Related work

The study on cyclic service queueing systems is quite extensive. It would thus be helpful if
these systems can be categorized. Several types of classifications have been presented in the
literature, with the most recent being the survey by Vishnevskii and Semenova (Vishnevskii
& Semenova, 2006). The classification presented here, however, is based on the most widely
used parameters and related work in those categories is then presented.

2.1 Categorization of cyclic service queueing models
In a cyclic service queueing system, two or more queues are associated with the same server,
which scans different queues in a round-robin manner and serves the queue if a packet is
present. This service can be of three types – exhaustive, non-exhaustive and gated. In an
exhaustive service model, the server switches over to the next queue only after completing
service for all the customers in the queue. This also includes any new customers that may
arrive during this time. On the other hand, in a gated system, service is provided to only those
customers that were present in the queue when the server arrives to that queue. A limited,
or non-exhaustive service is one in which a fixed number of customers – typically one – are
serviced by the server during one visit. Usually, the exhaustive service is considered more
efficient in terms of the waiting time of the customers than the gated service, which in turn
is considered more efficient than the non-exhaustive service. Hence, in case of the exhaustive
and gated service policies, queues with a large number of customers get more attention than
those with a small number of customers, resulting in a less fair service as compared to the non-
exhaustive service policy. So depending on the definition of "fairness", the non-exhaustive
service policy is the fairest. This is especially true for communication systems, as different
queues usually represent different traffic streams and it is undesirable to prefer one stream to
another if their priorities are equal.
Another important consideration in such systems is the switchover time which is the time
taken by the server to move to the next queue, after finishing service in the current queue.
The switchover time is usually quite small as compared to the service time and is ignored in
most studies. However, this can cause large differences in results especially if the switchover
rate is not large as compared to the service rate.
In addition to the finite switchover rate, another issue is the size of the queues. Most of the
studies on systems with cyclic service have been performed on queues of unlimited size. Real
systems always have finite buffers. In order to analyze real systems, queues with finite capac-
ity need to be modelled. An important feature of such systems is blocking, which happens
when the queue becomes full and any subsequent arrivals are lost.
The cyclic service queueing models can thus be mainly categorized in the following different
ways:

• Service discipline – exhaustive, gated and non-exhaustive.

• Switchover times – zero and non-zero.
• Buffer capacity – infinite, finite and single buffer.

2.2 Cyclic service systems with infinite buffers
Cyclic service queueing systems have been extensively studied in the literature. The first
study on the cyclic polling systems available is the patrolling machine repairman model (Mack
et al., 1957) where a single repairman visits a sequence of machines in cyclic order, inspecting
them and repairing them when failure has occurred. The first study on cyclic polling models
relating to communication networks was in the early 1970s to model the time-sharing com-
puter systems. Since then, there has been an extensive research in this area, especially since
the range of applications in which cyclic polling models can be used is very broad.
Leibowitz (Leibowitz, 1961) was among the first to study an approximate solution for symmet-
rically loaded cyclic polling system with gated service and constant switchover time. Cooper
and Murray (Coooper & Murray, 1969; Cooper, 1970) analyzed exhaustive and gated service
systems using an imbedded Markov chain technique for zero switchover time. Eisenberg
(Eisenberg, 1971) studied a two-queue system with general switchover time, while Eisenberg
(Eisenberg, 1972) and Hashida (Hashida, 1972) generalized the results of Cooper and Mur-
ray for non-zero switchover times. Bux and Truong (Bux & Truong, 1983) provided a simple
approximation analysis for an arbitrary number of queues, constant switchover time and ex-
haustive service discipline. Lee (Lee, 1996) studied a two-queue model where the server serves
customers in one queue according to an exhaustive discipline and the other queue according
to a limited discipline, while Boxma (Boxma, 2002) studied a combination of exhaustive and
limited disciplines in the two queues along with a patient server, which waits for a certain
time in case there are no customers present in one of the queues.
For non-exhaustive cyclic service and general switchover times, Kuehn (Kuehn, 1979) devel-
oped an approximation technique based on the concept of conditional cycle times and derived
a stability criteria for the general case of GI/G/1 systems with a cyclic priority service. Boxma
(Boxma, 1989) related the amount of work in a polling system with switchover times to the
amount of work in the same polling system without switchover times, leading to several stud-
ies on this relationship, notably by Cooper et al. (Cooper et al., 1996), Fuhrmann (Fuhrmann,
1992), Srinivasan et al. (Srinivasan et al., 1995), and Borst and Boxma (Borst & Boxma, 1997).
An important question is that how large should the switchover rate be as compared to the
service rate, so that it can be safely ignored. The answer is not simple and this study will
attempt to answer this question in relation to the cyclic service queueing models with finite
buffers and non-exhaustive service in later sections.

2.3 Cyclic service systems with finite buffers
While the study of cyclic service systems with infinite buffer capacity has been very exten-
sive and closed form solutions for several such systems with exhaustive service discipline
exist, the study of cyclic service systems with finite capacity queues and non-exhaustive ser-
vice discipline is rather limited in the literature. Single buffer systems have been studied by
Chung and Jung (Chung & Jung, 1994), and Takine et al., (Takine et al., 1986; 1987; 1990).
Magalhaes et al., (Magalhaes et al., 1998) present a distribution function for the interval be-
tween the instant when the customers leave each queue, in a two-queue M/M/1/1 polling
system. Titenko (Titenko, 1984) established formulae for the calculation of the moments of
any order of the waiting times for single-buffer queues. Takagi (Takagi, 1992) presented the
Laplace-Stieltjes transform (LST) of the cycle time for an exhaustive service, M/G/1/n polling
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Finally, the results are summarized in Section 7.

2. Related work

The study on cyclic service queueing systems is quite extensive. It would thus be helpful if
these systems can be categorized. Several types of classifications have been presented in the
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system. A virtual buffer scheme for customers entering the system when the queue is full is
suggested by Jung (Jung & Un, 1994). Tran-Gia and Raith have several important studies in
this area. In (Tran-Gia & Raith, 1985a;b), a non-exhaustive cyclic queueing systems with fi-
nite buffers is analyzed based on the imbedded Markov chain approach in conjunction with
a two-moment approximation for the cycle time. In (Tran-Gia, 1992), the stationary probabil-
ity distributions of the number of waiting customers at polling instants as well as arbitrary
instants for a GI/G/1/n polling system with a 1-limited service discipline is obtained using
discrete time analysis. Onvural and Perros (Onvural & Perros, 1989) present an approximation
method for obtaining the throughput of cyclic queueing networks with blocking as a function
of the number of customers. A polling system with Munit capacity queues and one infinite
capacity queue with exhaustive service is described in (Takine et al., 1990).
The work on polling systems has been well summarized by Takagi in various papers. In
(Takagi, 1986), all the results available till 1986 were organized, while an up-to-date summary
on polling systems was presented in (Takagi, 1988). This survey was updated twice in 1990
(Takagi, 1990) for all work until 1989 and 1997 (Takagi, 1997) for the advances made after
his previous update between the years 1990 to 1994. A more recent survey by Vishnevskii
and Semenova (Vishnevskii & Semenova, 2006) covers various polling models, including the
cyclic service models with finite service in great detail. It is clear, however, that accurate
and generalized results for cyclic service finite queueing models are still not available. Some
authors have provided a few closed form solutions for some specific models, but most of the
time, these are approximate solutions, mostly for single buffer systems.

3. Applications of cyclic service queueing systems

Polling models with cyclic service can be used in a wide range of applications, from computer
communications to robotics, production, manufacturing, and transportation. In computer
communications, the queueing model with cyclic service was first used in the analysis of time-
sharing computer systems in the early 1970’s. In the 1980’s, the token passing systems such
as the token ring and token bus, as well as other demand-based channel access schemes in
local area networks, such as the one shown in Figure 1, were analysed using such queueing
systems with cyclic service.
From legacy systems like the slotted ring networks and switching systems, to more recent
systems like wireless networks, optical burst assembly, Ethernet over SDH/SONET mapping
and traffic aggregation at the edge nodes, and all may employ cyclic service as a means of
providing fairness to incoming traffic. Queueing systems with cyclic service are extensively
used especially at the edge nodes to provide fairness to the different flows that arrive at the
node. One such example is the fair queueing system proposed by Nagel (Nagle, 1987). An-
other example is the mapping of Ethernet over SDH/SONET, as shown in Figure 2. Cyclic
service can also be employed by the burst assembler in an optical burst switching node as
shown in Figure 3.
Ibe and Trivedi (Ibe & Trivedi, 1990) propose the use of stochastic Petri Net models for obtain-
ing the performance measures of a finite buffer polling system using the exhaustive, gated
and limited service disciplines. Choi (Choi, 2004) proposes a cyclic polling based algorithm
for differentiated class of services in Ethernet passive optical networks. Takagi highlights three
classical but instructive applications of polling models to the performance evaluation of com-
munication networks in (Takagi, 2000). The three applications discussed are the half-duplex
transmission for an inquiry system, the polling data link control and the token ring network.
Bruneel and Kim (Bruneel & Kim, 1993), Grillo (Grillo, 1990), and Levy and Sidi (Levy & Sidi,
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1990) analyze several applications examples of communication networks, including the ATM
systems that employ the cyclic polling systems. In the late nineties, rapid development of the
broadband wireless transmission networks prompted several studies of the polling system
models in this area, especially by Ziouva and Antonakopoulos (Ziouva & Antonakopoulos,
2002/2007; 2003), and Vishnevskii (Vishnevsky et al., 1999; 2004). Miorandi et al., (Miorandi
et al., 2004) performed an interesting study on the performance evaluation of the Bluetooth
polling schemes.
The focus in this chapter is to study the basic polling models that employ non-exhaustive
cyclic service and finite queues, independent of the communication system involved, and
study the effect of switchover time on these systems.

4. Systems with zero switchover times

In this section, cyclic service queueing systems that ignore the switchover times during ser-
vice are studied. Typically, a server spends some time serving a customer and then switches
over to the next queue. The time taken for the server from the completion of service in one
queue to the commencement of service in the next queue is known as the switchover time.
This switchover takes a small amount of time as compared to the service time and is usually
ignored. The assumption here is that the switchover times in such systems will be very small
as compared to the service times and when ignored, they will not have a considerable effect
on the overall system performance.
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this area. In (Tran-Gia & Raith, 1985a;b), a non-exhaustive cyclic queueing systems with fi-
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method for obtaining the throughput of cyclic queueing networks with blocking as a function
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(Takagi, 1990) for all work until 1989 and 1997 (Takagi, 1997) for the advances made after
his previous update between the years 1990 to 1994. A more recent survey by Vishnevskii
and Semenova (Vishnevskii & Semenova, 2006) covers various polling models, including the
cyclic service models with finite service in great detail. It is clear, however, that accurate
and generalized results for cyclic service finite queueing models are still not available. Some
authors have provided a few closed form solutions for some specific models, but most of the
time, these are approximate solutions, mostly for single buffer systems.

3. Applications of cyclic service queueing systems

Polling models with cyclic service can be used in a wide range of applications, from computer
communications to robotics, production, manufacturing, and transportation. In computer
communications, the queueing model with cyclic service was first used in the analysis of time-
sharing computer systems in the early 1970’s. In the 1980’s, the token passing systems such
as the token ring and token bus, as well as other demand-based channel access schemes in
local area networks, such as the one shown in Figure 1, were analysed using such queueing
systems with cyclic service.
From legacy systems like the slotted ring networks and switching systems, to more recent
systems like wireless networks, optical burst assembly, Ethernet over SDH/SONET mapping
and traffic aggregation at the edge nodes, and all may employ cyclic service as a means of
providing fairness to incoming traffic. Queueing systems with cyclic service are extensively
used especially at the edge nodes to provide fairness to the different flows that arrive at the
node. One such example is the fair queueing system proposed by Nagel (Nagle, 1987). An-
other example is the mapping of Ethernet over SDH/SONET, as shown in Figure 2. Cyclic
service can also be employed by the burst assembler in an optical burst switching node as
shown in Figure 3.
Ibe and Trivedi (Ibe & Trivedi, 1990) propose the use of stochastic Petri Net models for obtain-
ing the performance measures of a finite buffer polling system using the exhaustive, gated
and limited service disciplines. Choi (Choi, 2004) proposes a cyclic polling based algorithm
for differentiated class of services in Ethernet passive optical networks. Takagi highlights three
classical but instructive applications of polling models to the performance evaluation of com-
munication networks in (Takagi, 2000). The three applications discussed are the half-duplex
transmission for an inquiry system, the polling data link control and the token ring network.
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1990) analyze several applications examples of communication networks, including the ATM
systems that employ the cyclic polling systems. In the late nineties, rapid development of the
broadband wireless transmission networks prompted several studies of the polling system
models in this area, especially by Ziouva and Antonakopoulos (Ziouva & Antonakopoulos,
2002/2007; 2003), and Vishnevskii (Vishnevsky et al., 1999; 2004). Miorandi et al., (Miorandi
et al., 2004) performed an interesting study on the performance evaluation of the Bluetooth
polling schemes.
The focus in this chapter is to study the basic polling models that employ non-exhaustive
cyclic service and finite queues, independent of the communication system involved, and
study the effect of switchover time on these systems.

4. Systems with zero switchover times

In this section, cyclic service queueing systems that ignore the switchover times during ser-
vice are studied. Typically, a server spends some time serving a customer and then switches
over to the next queue. The time taken for the server from the completion of service in one
queue to the commencement of service in the next queue is known as the switchover time.
This switchover takes a small amount of time as compared to the service time and is usually
ignored. The assumption here is that the switchover times in such systems will be very small
as compared to the service times and when ignored, they will not have a considerable effect
on the overall system performance.
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4.1 Model description
Cyclic service systems can be modelled as shown in Figure 4, which shows N queues, each of
size si (i = 1,. . . ,N), being served in a round-robin manner by a server with an exponentially
distributed service rate of mean µ. The arrival rate to each queue is also exponentially dis-
tributed with mean λi (i = 1,. . . ,N). The average time taken by the server to switch over from
one queue to the next is given by 1/ε where ε is the mean switchover rate.
At each scanning epoch, the server processes one packet in the queue if there is at least one
packet waiting. In case there is no waiting packet in the queue, the server switches over to the
next queue with a switchover rate of ε.
The following parameters are used:
N = number of queues in the system
λi = arrival rate of packets offered to queue i; i = 1,. . . ,N
Si = capacity of queue i; i = 1,. . . ,N
µ = mean service rate of the server
ε = mean switchover rate of the server
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Fig. 4. System model for a cyclic service queueing system

4.2 Basic two-queue system
The analysis of cyclic service queueing systems is presented with a model that has only two
queues as shown in Figure 5. Such a system can be considered as an M/M/1-s system.
The two-queue cyclic service system consists of one server and two queues with a capacity
of s1 and s2 respectively, as shown in Figure 5. The mean arrival rates to the two queues are
given by λ1 and λ2 respectively, while server completes each service with a mean rate of µ.

4.2.1 Analysis
For an exact analysis, the system states can be described by a vector
{Q1(t), Q2(t), . . . , Qn(t), I(t), X(t)}, where Qi(t) is the number of packets in the ith
queue, I(t) is the current location of the server within the cycle and X(t) is the age of the
current service (Kuehn, 1979). In this study, the single-stage service process is taken to be
a Markov process having a mean rate of µ. X(t) can then be ignored due to the PASTA
(Poisson Arrivals See Time Averages) property of the service process, which leaves us the
vector {Q1(t), Q2(t), . . . , Qn(t), I(t)} that accurately describes the system states. Hence for
this two-queue system, three variables for each system state are required – one each for
the number of occupied queue places – while another to show which queue’s customer is
currently undergoing service. Each state is then defined by the vector {Q1(t), Q2(t), I(t)},
where Q1(t) is the number of customers in the system coming through the first queue, Q2(t)
is the number of customers in the system coming through the second queue and I(t) is the
current location of the server within the cycle. Clearly, I(t) can have only two values where
a value of 1 means that the server is serving a customer from queue 1 while 2 means that the
server is serving a customer from queue 2. Q1(t) and Q2(t) can vary from zero to s1 and s2,
respectively. The state diagram will hence be three-dimensional as shown in Figure 6, where
transitions along the x-axis show arrivals of customers from queue 1 while transitions along
the y-axis show arrivals of customers from queue 2. The z-axis shows the current location
of the server within the cycle, with the front xy-plane showing the service of packets from
queue 1 and the back xy-plane showing the service of packets from queue 2. State diagram of
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4.2 Basic two-queue system
The analysis of cyclic service queueing systems is presented with a model that has only two
queues as shown in Figure 5. Such a system can be considered as an M/M/1-s system.
The two-queue cyclic service system consists of one server and two queues with a capacity
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given by λ1 and λ2 respectively, while server completes each service with a mean rate of µ.
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For an exact analysis, the system states can be described by a vector
{Q1(t), Q2(t), . . . , Qn(t), I(t), X(t)}, where Qi(t) is the number of packets in the ith
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this two-queue system, three variables for each system state are required – one each for
the number of occupied queue places – while another to show which queue’s customer is
currently undergoing service. Each state is then defined by the vector {Q1(t), Q2(t), I(t)},
where Q1(t) is the number of customers in the system coming through the first queue, Q2(t)
is the number of customers in the system coming through the second queue and I(t) is the
current location of the server within the cycle. Clearly, I(t) can have only two values where
a value of 1 means that the server is serving a customer from queue 1 while 2 means that the
server is serving a customer from queue 2. Q1(t) and Q2(t) can vary from zero to s1 and s2,
respectively. The state diagram will hence be three-dimensional as shown in Figure 6, where
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such systems usually consists of two parts – a boundary portion and a repeating portion. The
boundary portion usually shows the states and transitions when the queues of the system
are either empty or full, while the repeating portion usually shows the states and transitions
when there is something in the queues but the queues are still not full. For very large state
diagrams, such a depiction is very useful in studying the behavior of the system. Figure 7
shows a simplified view of the repeating portion of the state diagram in which transitions to
and from just one state are shown. The server will switch from one queue to the other with a
mean rate of ε.
Using the state diagram, the state probabilities pi of all the states can be calculated by solving
the system of linear equations. Using these state probabilities, the mean number in system
and mean number in queue can then be found using the following equations.
Mean number of customers in system:

E [N] =
s+1∑
x=0

xpx (1)

Mean number of customers in queue:

E [Q] =
s+1∑
x=1

(x − 1)px (2)

From these equations, using the Little’s theorem (Little, 1961), we get
Mean time in system:

TS =
E [N]

λ
(3)

Mean waiting time:

TW =
E [Q]

λ
(4)
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such systems usually consists of two parts – a boundary portion and a repeating portion. The
boundary portion usually shows the states and transitions when the queues of the system
are either empty or full, while the repeating portion usually shows the states and transitions
when there is something in the queues but the queues are still not full. For very large state
diagrams, such a depiction is very useful in studying the behavior of the system. Figure 7
shows a simplified view of the repeating portion of the state diagram in which transitions to
and from just one state are shown. The server will switch from one queue to the other with a
mean rate of ε.
Using the state diagram, the state probabilities pi of all the states can be calculated by solving
the system of linear equations. Using these state probabilities, the mean number in system
and mean number in queue can then be found using the following equations.
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Mean number of customers in queue:

E [Q] =
s+1∑
x=1

(x − 1)px (2)

From these equations, using the Little’s theorem (Little, 1961), we get
Mean time in system:

TS =
E [N]

λ
(3)

Mean waiting time:

TW =
E [Q]

λ
(4)
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An important point to note here is that the number in system are being considered, i.e., num-
ber in queue plus any customer that may be in service, and not just the number in queue.
Hence in the state diagram of Figure 6 as well as the equations, Q1 goes from 0 to s1 + 1 and
not s1, while Q2 goes from 0 to s2 + 1 and not s2.
Using (1) to (4), the various characteristic measures can be calculated for each queue as given
in (5) to (8).

E[N1] =
s2∑

i2=0

s1+1∑
i1=0

i1P(i1, i2, 1)+
s2+1∑
i2=0

s1∑
i1=0

i1P(i1, i2, 2) (5)

E[Q1] =
s2∑

i2=0

s1+1∑
i1=2

(i1 − 1)P(i1, i2, 1)+
s2+1∑
i2=0

s1∑
i1=1

i1P(i1, i2, 2) (6)

TS1 =
E [N1]

λ1
(7)

TW1 =
E [Q1]

λ1
(8)

When a customer arrives in a system and finds the server busy, it has to wait. If all the prob-
abilities for the states in which the customer has to wait are summed up, the probability of
waiting is obtained. Similarly, when a customer arrives to a system and finds the queue full, it
will be blocked. If all the probabilities of such states are summed, the probability of blocking
is obtained. The probabilities of waiting and blocking for this system are as follows:

W1 =
s2∑

i2=0

s1∑
i1=1

P(i1, i2, 1)+
s2+1∑
i2=0

s1−1∑
i1=0

P(i1, i2, 2) (9)

B1 =
s2∑

i2=0

P(s1 + 1, i2, 1)+
s2+1∑
i2=0

P(s1, i2, 2) (10)

4.2.2 Results
The various characteristic measures for customers in queue 1 will be affected not only by the
queue length and arrival rate in queue 1, but also the arrival rate and maximum queue size
of queue 2. Similarly, the switchover rate, although ignored during service, may still have an
effect on the characteristic measures, especially at lower arrival rates and needs to be studied
further.
In order to study these effects, various characteristic measures for customers in queue 1 given
by (5) to (10) are plotted against arrival rate in queue 1 for different queue sizes and different
arrival rates in queue 2. Symmetric as well as asymmetric traffic loads and queue sizes for
both queues are studied.
Figure 8 shows the mean number of customers in queue 1 against varying arrival rate in queue
1, for various queue capacities. The graph shows that the mean number of customers in queue
1 increases slowly for low arrival rates up to 0.4, but increases rapidly from 0.4 to 0.7. It then
stabilizes and levels out after the saturation point (arrival rate of 1.0). The graph also shows
that increasing the capacity in queue 2 from 3 to 10 has a very small effect on the mean number
of customers in queue 1. On the other hand, Figure 9 shows the mean number of customers

in queue 1 against varying arrival rate in queue 1, for various arrival rates in queue 2. It
can be clearly seen that the arrival rate of queue 2 has a significant effect on the queue length
distribution in queue 1. At low arrival rates in queue 2, the rate of increase in the queue length
of queue 1 is much slower than the rate of increase observed for a high arrival rate in queue 2,
as on average, the server spends more time serving customers of queue 2, especially at lower
arrival rates of queue 1.
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Figures 10 and 11 show the mean waiting time for customers of queue 1 against the arrival rate
of customers in queue 1, for varying queue capacities of both queues and varying arrival rate
of customers in queue 2. Here again, a similar behavior is seen, whereby the queue capacity of
queue 2 has a very small effect on the waiting time of customers in queue 1, as shown in Figure
10, but the increase of the arrival rate in queue 2 significantly increases the mean waiting time
of customers in queue 1.
Finally, in Figures 12 and 13, the effect of queue 2 on the probability of blocking and the
probability of waiting for customers in queue 1 is observed. Only the effect of increasing the
arrival rate in queue 2 are shown as it has been observed that queue capacity of queue 2 has
little effect on measures of queue 1. Here again, it is observed that a lower arrival rate in
queue 2 results in a gradual increase in the blocking and waiting for customers of queue 1 as
compared to a higher arrival rate, in which case this increase is quite abrupt.

4.3 Generalization to n-queue systems
An n-queue cyclic service system requires n + 1 state variables to describe a state and hence,
an n + 1 dimensional state diagram. An important feature that is observed in these systems is
the symmetry of the model. Extending the two-queue model to a more general n-queue model
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An important point to note here is that the number in system are being considered, i.e., num-
ber in queue plus any customer that may be in service, and not just the number in queue.
Hence in the state diagram of Figure 6 as well as the equations, Q1 goes from 0 to s1 + 1 and
not s1, while Q2 goes from 0 to s2 + 1 and not s2.
Using (1) to (4), the various characteristic measures can be calculated for each queue as given
in (5) to (8).
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TS1 =
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(8)

When a customer arrives in a system and finds the server busy, it has to wait. If all the prob-
abilities for the states in which the customer has to wait are summed up, the probability of
waiting is obtained. Similarly, when a customer arrives to a system and finds the queue full, it
will be blocked. If all the probabilities of such states are summed, the probability of blocking
is obtained. The probabilities of waiting and blocking for this system are as follows:
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B1 =
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P(s1 + 1, i2, 1)+
s2+1∑
i2=0

P(s1, i2, 2) (10)

4.2.2 Results
The various characteristic measures for customers in queue 1 will be affected not only by the
queue length and arrival rate in queue 1, but also the arrival rate and maximum queue size
of queue 2. Similarly, the switchover rate, although ignored during service, may still have an
effect on the characteristic measures, especially at lower arrival rates and needs to be studied
further.
In order to study these effects, various characteristic measures for customers in queue 1 given
by (5) to (10) are plotted against arrival rate in queue 1 for different queue sizes and different
arrival rates in queue 2. Symmetric as well as asymmetric traffic loads and queue sizes for
both queues are studied.
Figure 8 shows the mean number of customers in queue 1 against varying arrival rate in queue
1, for various queue capacities. The graph shows that the mean number of customers in queue
1 increases slowly for low arrival rates up to 0.4, but increases rapidly from 0.4 to 0.7. It then
stabilizes and levels out after the saturation point (arrival rate of 1.0). The graph also shows
that increasing the capacity in queue 2 from 3 to 10 has a very small effect on the mean number
of customers in queue 1. On the other hand, Figure 9 shows the mean number of customers

in queue 1 against varying arrival rate in queue 1, for various arrival rates in queue 2. It
can be clearly seen that the arrival rate of queue 2 has a significant effect on the queue length
distribution in queue 1. At low arrival rates in queue 2, the rate of increase in the queue length
of queue 1 is much slower than the rate of increase observed for a high arrival rate in queue 2,
as on average, the server spends more time serving customers of queue 2, especially at lower
arrival rates of queue 1.
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Figures 10 and 11 show the mean waiting time for customers of queue 1 against the arrival rate
of customers in queue 1, for varying queue capacities of both queues and varying arrival rate
of customers in queue 2. Here again, a similar behavior is seen, whereby the queue capacity of
queue 2 has a very small effect on the waiting time of customers in queue 1, as shown in Figure
10, but the increase of the arrival rate in queue 2 significantly increases the mean waiting time
of customers in queue 1.
Finally, in Figures 12 and 13, the effect of queue 2 on the probability of blocking and the
probability of waiting for customers in queue 1 is observed. Only the effect of increasing the
arrival rate in queue 2 are shown as it has been observed that queue capacity of queue 2 has
little effect on measures of queue 1. Here again, it is observed that a lower arrival rate in
queue 2 results in a gradual increase in the blocking and waiting for customers of queue 1 as
compared to a higher arrival rate, in which case this increase is quite abrupt.

4.3 Generalization to n-queue systems
An n-queue cyclic service system requires n + 1 state variables to describe a state and hence,
an n + 1 dimensional state diagram. An important feature that is observed in these systems is
the symmetry of the model. Extending the two-queue model to a more general n-queue model
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Fig. 9. Effect of varying arrival rate to queue 2, on number of customers in queue 1 for a
two-queue system
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Fig. 10. Effect of varying queue sizes of queues 1 and 2, on waiting time of customers in queue
1 for a two-queue system
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Fig. 12. Effect of varying arrival rate and maximum queue size of queue 2 on probability of
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Fig. 13. Effect of varying arrival rate and maximum queue size of queue 2, on probability of
waiting for customers in queue 1, for a two-queue system

is quite straight-forward. The complex part is the difficulty in drawing a state diagram with
more than three dimensions. Due to the symmetry of the model, however, it is quite sufficient
to draw a subset of the diagram for the boundary portion and the repeating portion of the
system. The derivation of the system equations is also straightforward and (11) to (16) give
the various measures for an n-queue system with switchover time ignored during service.
The mean number in system and mean number in queue are given by:
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Using Little’s theorem, the mean time in system and the mean waiting time can be obtained
as follows:

TS1 =
E[N1]

λ1
(13)

TW1 =
E[Q1]

λ1
(14)

The probability of waiting and probability of blocking can be calculated from the following
equations.
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is quite straight-forward. The complex part is the difficulty in drawing a state diagram with
more than three dimensions. Due to the symmetry of the model, however, it is quite sufficient
to draw a subset of the diagram for the boundary portion and the repeating portion of the
system. The derivation of the system equations is also straightforward and (11) to (16) give
the various measures for an n-queue system with switchover time ignored during service.
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5. Systems with non-zero switchover times

Cyclic service queueing systems have a broad range of applications in communication systems
mainly as a means of providing fairness to incoming traffic. In such systems, the server is
required to switch to the next traffic stream after serving one. Usually in optical networks,
this switching is done very fast as compared to the service and hence, the switchover time
– which is the time taken by the server to switch from one stream to the next – is usually
ignored. This however, can cause large differences in the results, especially if the switchover
time is not very small as compared to the service time.
This section presents an analytical study of an edge node that employs non-exhaustive cyclic
service to serve various incoming streams as a two-stage process (serving and switchover),
and finite size queues to model real systems as closely as possible. The effect of switchover
time on the performance of such systems is then studied. Comparison of systems with various
ratios of switchover times to the service times is also done and the scenarios under which
switchover times cannot be ignored are discussed.

5.1 Cyclic service system with two-stage service
An n-queue cyclic service system with two-stage non-exhaustive service can be modelled as
shown in Figure 14. The n queues, each of size si(i = 1, . . . , n), are served in a round-robin
manner by a server with a negative exponentially distributed service rate of mean µ. The
arrival rate to each queue is Poisson with mean λi(i = 1, . . . , n). The average time taken by
the server to switch over from one queue to the next is given by 1/ε where ε is the mean
switchover rate.
At each scanning epoch, the server processes one packet in the queue if there is at least one
packet waiting, with a rate of µ and then switches over to the next queue with a rate of ε. In
case there is no waiting packet in the queue, the server simply switches over to the next queue
with a switchover rate of ε.

µ

s1

s2

sn

ε
λ2

λn

λ1

Fig. 14. System model for a queueing system with two-stage cyclic service

5.1.1 Analysis
For an exact analysis, the system states can be described by a vector
{Q1(t), Q2(t), . . . , Qn(t), I(t), X(t)}, where Qi(t) is the number of packets in the ith
queue, I(t) is the current location of the server within the cycle and X(t) is the age of the
current service (Kuehn, 1979). In this study, a two-stage service process is assumed, with each
of its two stages as a Markov process having mean rates of µ and ε for service and switchover,

respectively. X(t) can then be ignored due to the PASTA (Poisson Arrivals See Time Averages)
property of the service process, which leaves us the vector {Q1(t), Q2(t), . . . , Qn(t), I(t)} that
accurately describes the system states.
In case of the two-stage process presented here however, an additional state is needed to
differentiate between two switchover cases. The first occurs after the processing of the packet
in a non-empty queue, in which case the service will be two-stage; and the switchover that
occurs for an empty queue, in which case the service will consist of only the switchover. The
state space is hence modelled using the vector {Q1(t), Q2(t), . . . , Qn(t), I(t), K(t)}, where K(t)
is defined as the status of the server.
This study is restricted to two queues (n = 2). Each state is described by four parameters
(i1, i2, j, k), where i1 is the number of packets in queue 1, i2 is the number of packets in queue
2, j is the current location of the server within the cycle (j = 1 means the server is scanning
queue 1 while j = 2 means the server is scanning queue 2) and k is the status of the server.
This server status can have three possible values: k = 0 means that the server encountered
an empty queue and will simply switchover to the next queue without processing a packet,
k = 1 means that the server is processing a packet, and k = 2 means that the server is switching
over to the next queue after processing a packet in a non-empty queue. The resulting three-
dimensional state diagram with a queue capacity of two for each queue is shown in Figure 15.
It can be easily seen that a state diagram for more than two queues needs a four-dimension
representation, which is not possible to draw on paper.
Figure 16 shows a simplified view of the repeating portion of the state diagram in which
transitions to and from just one state are shown. Note that these transitions can be divided
into four main parts:

• Arrivals to queue 1, which result in an increment of i1. All other parameters describing
the state remain unchanged.

• Arrivals to queue 2, which result in an increment of i2. All other parameters remain
unchanged.

• Service followed by switchover from queue 1. In this case, processing of a packet re-
sults in a decrement of i1, while the server status changes to 2 from 1. Switchover then
changes j to 2 from 1, indicating that server is now pointing at queue 2, while the server
status k changes to 1 from 2 indicating that the server is ready to serve queue 2.

• Service followed by switchover from queue 2. In this case, processing of a packet results
in a decrement of i2, while the server status k changes to 2 from 1. Switchover then
changes j to 1 from 2, indicating that the server is now pointing at queue 1, while the
server status changes to 1 from 2 indicating that the server is ready for service.

Figure 17 shows the states of the system and the transitions that occur when the queues are
empty. Note that in this case, no packets will be processed and the service process will consist
of just the switchover. The transitions would be similar to those described above with the
exception that after service and switchover, if the server sees an empty queue, the server
status k will go to 0 instead of 1.
The steady state solution of the state-space model shown in Figure 15 can be obtained by
solving the system of equations that is obtained from the state diagram. The steady state
probabilities thus obtained can be used to solve for the various system measures. The mean
number in the system, E[N1] and the mean number in queue E[Q1] for packets of type 1, i.e.,
packets that arrive to queue 1 are given by (17) and (18), respectively.
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respectively. X(t) can then be ignored due to the PASTA (Poisson Arrivals See Time Averages)
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accurately describes the system states.
In case of the two-stage process presented here however, an additional state is needed to
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in a non-empty queue, in which case the service will be two-stage; and the switchover that
occurs for an empty queue, in which case the service will consist of only the switchover. The
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(i1, i2, j, k), where i1 is the number of packets in queue 1, i2 is the number of packets in queue
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This server status can have three possible values: k = 0 means that the server encountered
an empty queue and will simply switchover to the next queue without processing a packet,
k = 1 means that the server is processing a packet, and k = 2 means that the server is switching
over to the next queue after processing a packet in a non-empty queue. The resulting three-
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It can be easily seen that a state diagram for more than two queues needs a four-dimension
representation, which is not possible to draw on paper.
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transitions to and from just one state are shown. Note that these transitions can be divided
into four main parts:

• Arrivals to queue 1, which result in an increment of i1. All other parameters describing
the state remain unchanged.

• Arrivals to queue 2, which result in an increment of i2. All other parameters remain
unchanged.

• Service followed by switchover from queue 1. In this case, processing of a packet re-
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status k will go to 0 instead of 1.
The steady state solution of the state-space model shown in Figure 15 can be obtained by
solving the system of equations that is obtained from the state diagram. The steady state
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Fig. 15. Three dimensional state diagram of a non-exhaustive cyclic queueing system with
two queues, each of size two and a two-stage service process
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Fig. 16. Simplified view of the transitions to and from a state when queue are not empty
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E[N1] =
s∑

i2=0

s+1∑
i1=1

i1P(i1, i2, 1, 1)

+
s∑

i1=0


i1P(i1, 0, 2, 0) +

s+1∑
i2=1

i1P(i1, i2, 2, 1)




+
2∑

j=1

s∑
i2=0

s∑
i1=0

i1P(i1, i2, j, 2)

(17)

E[Q1] =
s∑

i2=0

s+1∑
i1=1

(i1 − 1)P(i1, i2, 1, 1)

+
s∑

i1=0


i1P(i1, 0, 2, 0) +

s+1∑
i2=1

i1P(i1, i2, 2, 1)




+
2∑

j=1

s∑
i2=0

s∑
i1=0

i1P(i1, i2, j, 2)

(18)

Applying Little’s law (Little, 1961), the mean system time, TS1, and mean waiting time, TW1,
can be found from (17) and (18) as follows:

TS1 =
E[N1]

λ1
(19)

TW1 =
E[Q1]

λ1
(20)

The probability of waiting, W1, is obtained by summing up the probabilities of the state, where
on arrival, a packet has to wait, and is given by (21) for the packets of queue 1, while the
probability of blocking, B1, is obtained by summing up the state probabilities where queue 1
is full as given in (22).

W1 =
s∑

i2=0

s∑
i1=1

P(i1, i2, 1, 1) +
s−1∑
i1=0


P(i1, 0, 2, 0) +

s+1∑
i2=1

P(i1, i2, 2, 1)




+
2∑

j=1

s∑
i2=0

s−1∑
i1=0

P(i1, i2, j, 2)

(21)

B1 =
s∑

i2=0

P(s + 1, i2, 1, 1) + P(s, 0, 2, 0) +
s+1∑
i2=1

P(s, i2, 2, 1)

+
2∑

j=1

s∑
i2=0

P(s, i2, j, 2)

(22)

5.1.2 Results
The effect of varying the switchover rate and input load on the mean number in system, mean
waiting time, probability of waiting and probability of blocking is studied. In Figure 18, the
input load for queue 2 is fixed at 0.1 and queue size of both queues to 10. The resulting graph
shows that for values of switchover rate comparable to the service rate, the queue capacity
is reached quickly and at a much lower load as compared to when the switchover rate is ten
times that of the service rate. This effect is significantly reduced when the switchover rate is
increased to hundred times that of the service rate and beyond. The same effect can also be
noted in Figure 19 that shows the mean waiting time against the arrival rate for queue 1.
In Figures 20 and 21, the load of queue 2 is also varied from 0.1 to 0.9 along with the switchover
rate to service rate ratio from 1 to 10, to see their combined effect. An interesting phenomenon
to note here is that when the switchover rate is equal to the service rate, the effect of varying
the load of queue 2 does not significantly affect the mean number in queue or the mean wait-
ing time for queue 1. However, when the switchover rate is ten times faster than the service
rate, the effect of varying the load in queue 2 has a significant impact on the mean number in
queue and the mean waiting time for customers in queue 1. Note that the mean waiting time
increases rapidly with increasing traffic until a certain level, after which the overload in the
system results in blocking, thus reducing the overall waiting.
Figure 22 shows the probability of waiting for customers in queue 1 for an arrival rate in queue
2 of 0.1. Probability of waiting is the probability that a customer, on entering the system, finds
the server busy and has to wait in queue. Again it is observed that the effect of switchover
rate is dominant when it is equal to the service rate but its impact is reduced as it is increased
to 10 or 100 times the service rate.
Finally, Figure 23 shows the probability of blocking against the arrival rate of queue 1. The
probability of blocking is the probability that the customer, on entering the system, finds the
server and all queues full and is lost. Here, the switchover to service rate ratio as well as
the arrival rate of queue 2 is varied again and it is observed that varying the arrival rate has
little effect on the probability of blocking when the switchover and service rates are the same.
However, at higher ratios of the switchover rate to service rate, the effect of varying the load
on queue 2 has a big impact on the probability of blocking for customers in queue 1.
It can be concluded that switchover time should not be ignored in systems where the ratio of
service time to switchover time is small (or conversely, the ratio of switchover rate to service
rate is small) as it significantly affects the performance of the system. It is also observed that
at switchover rates comparable to those of the service rates, the effect of varying arrival rates
in the other queues has little effect on the system performance, but this effect becomes more
pronounced as the ratio between switchover rate and service rate increases. Hence for high
speed optical communication systems, like edge nodes that map Ethernet over SDH/SONET
or burst assemblers in optical burst switching nodes, one should proceed with care whenever
switchover times are involved as the high data rates usually mean that the ratio between
the switchover rate and service rate might not be high enough to ignore the switchover rate
during analysis.

6. Comparing systems with and without switchover times

In the previous section, the effect of the increase and decrease in the switchover time on the
various characteristic measures was studied. This sections compares identical cyclic service
queueing systems with and without switchover times. Hence the results from Sections 5.4.2
and 5.5.1 will be reused to make this comparison.
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E[N1] =
s∑

i2=0

s+1∑
i1=1

i1P(i1, i2, 1, 1)

+
s∑
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+
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i1P(i1, i2, j, 2)

(17)

E[Q1] =
s∑

i2=0

s+1∑
i1=1

(i1 − 1)P(i1, i2, 1, 1)

+
s∑

i1=0


i1P(i1, 0, 2, 0) +
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
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+
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s∑
i2=0

s∑
i1=0

i1P(i1, i2, j, 2)

(18)

Applying Little’s law (Little, 1961), the mean system time, TS1, and mean waiting time, TW1,
can be found from (17) and (18) as follows:

TS1 =
E[N1]

λ1
(19)

TW1 =
E[Q1]

λ1
(20)

The probability of waiting, W1, is obtained by summing up the probabilities of the state, where
on arrival, a packet has to wait, and is given by (21) for the packets of queue 1, while the
probability of blocking, B1, is obtained by summing up the state probabilities where queue 1
is full as given in (22).

W1 =
s∑

i2=0

s∑
i1=1

P(i1, i2, 1, 1) +
s−1∑
i1=0


P(i1, 0, 2, 0) +
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P(i1, i2, 2, 1)




+
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j=1

s∑
i2=0

s−1∑
i1=0

P(i1, i2, j, 2)

(21)

B1 =
s∑

i2=0

P(s + 1, i2, 1, 1) + P(s, 0, 2, 0) +
s+1∑
i2=1

P(s, i2, 2, 1)

+
2∑

j=1

s∑
i2=0

P(s, i2, j, 2)

(22)

5.1.2 Results
The effect of varying the switchover rate and input load on the mean number in system, mean
waiting time, probability of waiting and probability of blocking is studied. In Figure 18, the
input load for queue 2 is fixed at 0.1 and queue size of both queues to 10. The resulting graph
shows that for values of switchover rate comparable to the service rate, the queue capacity
is reached quickly and at a much lower load as compared to when the switchover rate is ten
times that of the service rate. This effect is significantly reduced when the switchover rate is
increased to hundred times that of the service rate and beyond. The same effect can also be
noted in Figure 19 that shows the mean waiting time against the arrival rate for queue 1.
In Figures 20 and 21, the load of queue 2 is also varied from 0.1 to 0.9 along with the switchover
rate to service rate ratio from 1 to 10, to see their combined effect. An interesting phenomenon
to note here is that when the switchover rate is equal to the service rate, the effect of varying
the load of queue 2 does not significantly affect the mean number in queue or the mean wait-
ing time for queue 1. However, when the switchover rate is ten times faster than the service
rate, the effect of varying the load in queue 2 has a significant impact on the mean number in
queue and the mean waiting time for customers in queue 1. Note that the mean waiting time
increases rapidly with increasing traffic until a certain level, after which the overload in the
system results in blocking, thus reducing the overall waiting.
Figure 22 shows the probability of waiting for customers in queue 1 for an arrival rate in queue
2 of 0.1. Probability of waiting is the probability that a customer, on entering the system, finds
the server busy and has to wait in queue. Again it is observed that the effect of switchover
rate is dominant when it is equal to the service rate but its impact is reduced as it is increased
to 10 or 100 times the service rate.
Finally, Figure 23 shows the probability of blocking against the arrival rate of queue 1. The
probability of blocking is the probability that the customer, on entering the system, finds the
server and all queues full and is lost. Here, the switchover to service rate ratio as well as
the arrival rate of queue 2 is varied again and it is observed that varying the arrival rate has
little effect on the probability of blocking when the switchover and service rates are the same.
However, at higher ratios of the switchover rate to service rate, the effect of varying the load
on queue 2 has a big impact on the probability of blocking for customers in queue 1.
It can be concluded that switchover time should not be ignored in systems where the ratio of
service time to switchover time is small (or conversely, the ratio of switchover rate to service
rate is small) as it significantly affects the performance of the system. It is also observed that
at switchover rates comparable to those of the service rates, the effect of varying arrival rates
in the other queues has little effect on the system performance, but this effect becomes more
pronounced as the ratio between switchover rate and service rate increases. Hence for high
speed optical communication systems, like edge nodes that map Ethernet over SDH/SONET
or burst assemblers in optical burst switching nodes, one should proceed with care whenever
switchover times are involved as the high data rates usually mean that the ratio between
the switchover rate and service rate might not be high enough to ignore the switchover rate
during analysis.

6. Comparing systems with and without switchover times

In the previous section, the effect of the increase and decrease in the switchover time on the
various characteristic measures was studied. This sections compares identical cyclic service
queueing systems with and without switchover times. Hence the results from Sections 5.4.2
and 5.5.1 will be reused to make this comparison.
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Fig. 18. Effect of varying the switchover rate on number of customers in queue 1
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Fig. 19. Effect of varying the switchover rate on mean waiting time for customers in queue 1
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Fig. 20. Effect of varying the switchover rate and the arrival rate for queue 2 on number of
customers in queue 1
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Fig. 21. Effect of varying the switchover rate and the arrival rate for queue 2 on mean waiting
time for customers in queue 1
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Fig. 21. Effect of varying the switchover rate and the arrival rate for queue 2 on mean waiting
time for customers in queue 1
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Fig. 22. Effect of varying the switchover rate on probability of waiting for customers in queue 1
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Fig. 23. Effect of varying the switchover rate and the arrival rate for queue 2 on probability of
blocking for customers in queue 1

Figure 24 shows two sets of plots for the mean number in queue for customers of queue 1.
The first set of plots is for systems in which the switchover rate is ignored during service. The
second set of plots is for systems in which this rate is not ignored. These two sets of plots
are drawn for switchover rates of 1, 10 and 100, respectively. It is clearly observed that for a
switchover rate of 100 times the service rate, the plots for these two cases are almost identical.
The difference, however, is not negligible when the switchover rate is decreased to 10 times
the service rate. This difference becomes very significant when the switchover rate is of the
order of the service rate. This shows that although for higher ratios of the switchover rate
versus the service rate, it is safe to ignore the switchover rate during service, however, as this
ratio decreases, the difference in values of the characteristic measures becomes too significant
for the switchover time to be ignored.
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Fig. 24. Comparison of the mean number in queue 1 for systems with and without switchover
rates during service, for a queue size of 10 and arrival rate of 0.1 in queue 2

The same phenomenon can be observed in Figure 25, which shows two sets of plots for the
mean waiting time for customers of queue 1. Here again, the first set of plots is for systems in
which the switchover rate is ignored during service while the second set of plots is for systems
in which this rate is not ignored. These two sets of plots are drawn for switchover rates of 1,
10 and 100, respectively. Again, it can be observed that for higher ratios of the switchover rate
versus the service rate, it is safe to ignore the switchover rate during service, however, as this
ratio decreases, the difference in values of the characteristic measures becomes too significant
for the switchover time to be ignored. Typically for these systems, ratios of the switchover rate
versus the service rate of more than 100 should be sufficiently large for the switchover time
to be ignored. If this ratio is less than 100, ignoring the switchover time could lead to large
differences in results.
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Fig. 22. Effect of varying the switchover rate on probability of waiting for customers in queue 1
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Fig. 23. Effect of varying the switchover rate and the arrival rate for queue 2 on probability of
blocking for customers in queue 1

Figure 24 shows two sets of plots for the mean number in queue for customers of queue 1.
The first set of plots is for systems in which the switchover rate is ignored during service. The
second set of plots is for systems in which this rate is not ignored. These two sets of plots
are drawn for switchover rates of 1, 10 and 100, respectively. It is clearly observed that for a
switchover rate of 100 times the service rate, the plots for these two cases are almost identical.
The difference, however, is not negligible when the switchover rate is decreased to 10 times
the service rate. This difference becomes very significant when the switchover rate is of the
order of the service rate. This shows that although for higher ratios of the switchover rate
versus the service rate, it is safe to ignore the switchover rate during service, however, as this
ratio decreases, the difference in values of the characteristic measures becomes too significant
for the switchover time to be ignored.
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Fig. 24. Comparison of the mean number in queue 1 for systems with and without switchover
rates during service, for a queue size of 10 and arrival rate of 0.1 in queue 2

The same phenomenon can be observed in Figure 25, which shows two sets of plots for the
mean waiting time for customers of queue 1. Here again, the first set of plots is for systems in
which the switchover rate is ignored during service while the second set of plots is for systems
in which this rate is not ignored. These two sets of plots are drawn for switchover rates of 1,
10 and 100, respectively. Again, it can be observed that for higher ratios of the switchover rate
versus the service rate, it is safe to ignore the switchover rate during service, however, as this
ratio decreases, the difference in values of the characteristic measures becomes too significant
for the switchover time to be ignored. Typically for these systems, ratios of the switchover rate
versus the service rate of more than 100 should be sufficiently large for the switchover time
to be ignored. If this ratio is less than 100, ignoring the switchover time could lead to large
differences in results.
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Fig. 25. Comparison of the mean waiting time in queue 1 for systems with and without
switchover rates during service, for a queue size of 10 and arrival rate of 0.1 in queue 2

7. Summary

This chapter presented an overview of the various types of polling systems. Polling systems
were classified and the existing work was summarized. Cyclic service queueing systems and
their applications in modern day communication systems were then discussed. While a lot of
work has been done on polling systems with exhaustive service and infinite queues, with sev-
eral closed form solutions, the work on finite queue, non-exhaustive cyclic polling systems is
very limited, and only approximate solutions are available. Starting with a simple two-queue
cyclic polling model with switchover time ignored during service, various characteristic mea-
sures were studied, including the mean waiting time and the blocking probability for the
customers in the system. This simple two-queue model was then extended to an n-queue
model and generalized formulae were developed.. In most of the studies, the switchover time
– an important parameter – has been ignored. In order to see the effect of the switchover time,
especially in optical communication systems where ever increasing speeds imply an ever di-
minishing ratio of service time to switchover time, a two-stage service model was developed
for a two-queue system with service followed by switchover. This model was then compared
with the model in which switchover time was ignored during service. Significant differences
were noted when the ratio of service time to switchover time was small. However, this dif-
ference was negligible where the ratio between service time and switchover time was greater
than 100. It can thus be concluded that it is not always safe to ignore the switchover times. It is
important to note that the various techniques discussed here have been mostly for small sys-
tems with two, or three-queues. It is straightforward to extend this study to multiple queues
with large queue sizes because of the symmetric nature of the systems. The practical limita-

tion is due to the state space explosion that occurs when large systems are modelled, which
result in large computational times and require heavy computational resources.
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7. Summary

This chapter presented an overview of the various types of polling systems. Polling systems
were classified and the existing work was summarized. Cyclic service queueing systems and
their applications in modern day communication systems were then discussed. While a lot of
work has been done on polling systems with exhaustive service and infinite queues, with sev-
eral closed form solutions, the work on finite queue, non-exhaustive cyclic polling systems is
very limited, and only approximate solutions are available. Starting with a simple two-queue
cyclic polling model with switchover time ignored during service, various characteristic mea-
sures were studied, including the mean waiting time and the blocking probability for the
customers in the system. This simple two-queue model was then extended to an n-queue
model and generalized formulae were developed.. In most of the studies, the switchover time
– an important parameter – has been ignored. In order to see the effect of the switchover time,
especially in optical communication systems where ever increasing speeds imply an ever di-
minishing ratio of service time to switchover time, a two-stage service model was developed
for a two-queue system with service followed by switchover. This model was then compared
with the model in which switchover time was ignored during service. Significant differences
were noted when the ratio of service time to switchover time was small. However, this dif-
ference was negligible where the ratio between service time and switchover time was greater
than 100. It can thus be concluded that it is not always safe to ignore the switchover times. It is
important to note that the various techniques discussed here have been mostly for small sys-
tems with two, or three-queues. It is straightforward to extend this study to multiple queues
with large queue sizes because of the symmetric nature of the systems. The practical limita-

tion is due to the state space explosion that occurs when large systems are modelled, which
result in large computational times and require heavy computational resources.
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1. Introduction  

The continued growth of Internet Protocol-based traffic like data, voice, audio, TV, and 
gaming traffic, requires much more robust, highly scalable core routers/switches to handle 
the expected annual doubling of bandwidth in the United States and Europe and the 
expected tripling and possibly quadrupling of bandwidth in Asia. In the near future service 
providers will need to deploy a new class of core routers that have taken a major leap 
forward in design. While the bandwidth of external connections on core routers has 
increased in recent years from STM-1 to STM-16 and STM-64, tomorrow’s core routers will 
need to support STM-256 connections operating at 40 Gbps. In addition, the number of line 
cards that the core router will need to support will grow dramatically to handle the 
aggregate subscriber and backbone bandwidth. To meet these new demands, tomorrow’s 
router architectures will have to function very differently from those of today. They will 
require distributed memories and multi-stage switching fabrics that replace single-stage 
crossbars, allowing extraordinary scalability. 
The main part of each high-performance network node is a switching fabric - instead of a 
shared central bus - which transfers a packet from its input link to its output link (Fig. 1). 
The switching fabric provides very fast transmission between line cards, therefore the router 
throughput is improved. Internally, high capacity switches/routers operate on fixed-size 
data units, called cells from the ATM jargon. This means that in the case of variable-size 
packets on transmission lines, as it is normally the case in the Internet, packets must be 
segmented into cells at switch inputs, and cells must be reassembled into packets at switch 
outputs (Chao & Cheuk, 2001). There are mainly two approaches to the implementation of 
high-speed packet switching systems. One approach is the single-stage switch architecture 
such as the crossbar switch, the other one is the multiple-stage switch architecture, such as 
the Clos-network switch. Most high-speed packet switching systems in the backbone of the 
Internet are currently built on the basis of a single-stage switching fabric with a centralized 
scheduler. Crossbar switches are internally nonblocking and simple in architecture. 
However, they are only little scalable due to the number of the crosspoints, which grows as 
N2, where N is the total number of inputs/outputs. Multiple-stage Clos-network switches 
are a potential solution to overcome the limited scalability of single-stage switches, in terms 
of the number of input/output chip pins and the number of switching elements.  
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Fig. 1. High-performance router architecture 
 
In the Clos-network switch packet scheduling is needed as there is a large number of shared 
resources where contention may occur. A cell transmitted within the multiple-stage Clos 
switching fabric can face internal blocking or output port contention. Internal blocking 
occurs when two or more cells contend for an internal link at the same time (Fig.2). A switch 
suffering from internal blocking is called blocking contrary to a switch that does not suffer 
from internal blocking called nonblocking. The output port contention occurs if there are 
multiple cells contend for the same output port. 

 
Fig. 2. Internal blocking: two cells destined for output ports 0 and 1 try to go through the 
same internal link, at the same time 
 
Cells that have lost contention must be either discarded or buffered. Generally speaking, 
buffers may be placed at inputs, outputs, inputs and outputs, and/or within the switching 
fabric. Depending on the buffer placement respective switches are called input queued (IQ), 
output queued (OQ), combined input and output queued (CIOQ) and combined input and 
crosspoint queued (CICQ) (Yoshigoe &Christensen, 2003).  
In the OQ strategy all incoming cells (i.e. fixed-length packets) are allowed to arrive at the 
output port and are stored in queues located at each output of switching elements. The cells 
destined for the same output port simultaneously do not face a contention problem because 
they are queued in the buffer at the output. To avoid the cell loss the system must be able to 
write N cells in the queue during one cell time. No arbiter is required because all the cells 
can be switched to respective output queue. The cells in the output queue are served using 
FIFO discipline to maintain the integrity of the cell sequence. In OQ switches the best 
performance (100% throughput, low mean time delay) is achieved, but every output port 
must be able to accept a cell from every input port simultaneously or at least within a single 
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time slot (a time slot is the duration of a cell). An output buffered switch can be more 
complex than an input buffered switch because the switching fabric and output buffers must 
effectively operate at a much higher speed than that of each port to reduce the probability of 
cell loss. The bandwidth required inside the switching fabric is proportional to both the 
number of ports N and the line rate. The internal speedup factor is inherent to pure output 
buffering, and is the main reason of difficulties in implementing switches with output 
buffering. Since the output buffer needs to store N cells in each time slot, its speed limits the 
switch size.  
The IQ packet switches have the internal operation speed equal to (or slightly higher) than 
the input/output line speed, but the throughput is limited to 58,6% under uniform traffic 
and Bernoulli packet arrivals because of Head-Of-Line (HOL) blocking phenomenon (Chao 
& Cheuk, 2001). HOL blocking causes the idle output to remain idle even if at an idle input 
there is a cell waiting to be sent to an (idle) output. Due to other cell that is ahead of it in the 
buffer the cell cannot be transmitted over the switching fabric. An example of HOL blocking 
is shown in Fig. 3. This problem can be solved by selecting queued cells other than the HOL 
cell for transmission, but it is difficult to implement such queuing discipline in hardware. 
Another solution is to use speedup, i.e. the switch’s internal links speed is greater than 
inputs/outputs speed. However, this also requires a buffer memory speed faster than a link 
speed. To increase the throughput of IQ switches space parallelism is also used in the switch 
fabric, i.e. more than one input port of the switch can transmit simultaneously.  

 
Fig. 3. Head-of-line blocking 
 
The virtual output queuing (VOQ) is widely implemented as a good solution for input 
queued (IQ) switches, to avoid the HOL blocking encountered in the pure input-buffered 
switches. In VOQ switches every input provides a single and separate FIFO for each output. 
Such a FIFO is called a Virtual Output Queue. When a new cell arrives at the input port, it is 
stored in the destined queue and waits for transmission through a switching fabric.  
To solve internal blocking and output port contention issues in VOQ switches fast 
arbitration schemes are needed. An arbitration scheme is essentially a service discipline that 
arranges the transmission order among the input cells. It decides which items of information 
should be passed from inputs to arbiters, and – based on that decision – how each arbiter 
picks one cell from among all input cells destined for the output. The arbitration decisions 
for every output port have to be taken in each time slot using a central arbiter, or distributed 
arbiters. In the distributed manner, each output has its own arbiter operating independently 
from others. However, in this case it is necessary to send many request-grant-accept signals. 
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time slot (a time slot is the duration of a cell). An output buffered switch can be more 
complex than an input buffered switch because the switching fabric and output buffers must 
effectively operate at a much higher speed than that of each port to reduce the probability of 
cell loss. The bandwidth required inside the switching fabric is proportional to both the 
number of ports N and the line rate. The internal speedup factor is inherent to pure output 
buffering, and is the main reason of difficulties in implementing switches with output 
buffering. Since the output buffer needs to store N cells in each time slot, its speed limits the 
switch size.  
The IQ packet switches have the internal operation speed equal to (or slightly higher) than 
the input/output line speed, but the throughput is limited to 58,6% under uniform traffic 
and Bernoulli packet arrivals because of Head-Of-Line (HOL) blocking phenomenon (Chao 
& Cheuk, 2001). HOL blocking causes the idle output to remain idle even if at an idle input 
there is a cell waiting to be sent to an (idle) output. Due to other cell that is ahead of it in the 
buffer the cell cannot be transmitted over the switching fabric. An example of HOL blocking 
is shown in Fig. 3. This problem can be solved by selecting queued cells other than the HOL 
cell for transmission, but it is difficult to implement such queuing discipline in hardware. 
Another solution is to use speedup, i.e. the switch’s internal links speed is greater than 
inputs/outputs speed. However, this also requires a buffer memory speed faster than a link 
speed. To increase the throughput of IQ switches space parallelism is also used in the switch 
fabric, i.e. more than one input port of the switch can transmit simultaneously.  

 
Fig. 3. Head-of-line blocking 
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queued (IQ) switches, to avoid the HOL blocking encountered in the pure input-buffered 
switches. In VOQ switches every input provides a single and separate FIFO for each output. 
Such a FIFO is called a Virtual Output Queue. When a new cell arrives at the input port, it is 
stored in the destined queue and waits for transmission through a switching fabric.  
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arbitration schemes are needed. An arbitration scheme is essentially a service discipline that 
arranges the transmission order among the input cells. It decides which items of information 
should be passed from inputs to arbiters, and – based on that decision – how each arbiter 
picks one cell from among all input cells destined for the output. The arbitration decisions 
for every output port have to be taken in each time slot using a central arbiter, or distributed 
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0

1

2

3

0

1

2

3

2

0

3

2

1

Cell blocked due to HOL blocking OutputsInputs



Switched Systems138

 

It is very difficult to implement such arbitration in the real environment because of time 
constraints. A central arbiter may also create a bottleneck due to time constraints as the 
switch size increases.  
Considerable work has been done on scheduling algorithms for the crossbar and three-stage 
Clos-network VOQ switches. Most of them achieve 100% throughput under the uniform 
traffic, but the throughput is usually reduced under the nonuniform traffic (Chao & Liu, 
2007). A switch can achieve 100% throughput under the uniform or nonuniform traffic if the 
switch is stable, as it was defined in (McKeown at al., 1999). In general, a switch is stable for 
a particular arrival process if the expected length of the input queues does not grow without 
limits. 
This chapter presents basic ideas concerning packet switching in next generation 
switches/routers. The simulation results obtained by us for the well known and new packet 
dispatching schemes for the three-stage buffered Clos-network switches are also shown and 
discussed. The remainder of the chapter is organized as follows: subchapter 2 introduces 
some background knowledge concerning the Clos-network switch that we refer to 
throughout this chapter; subchapter 3 presents packet dispatching schemes with distributed 
arbitration; subchapter 4 is devoted to dispatching schemes with centralized arbitration. A 
survey of related works is carried out in subchapter 5.  

 
2. Clos switching network 

In 1953, Clos proposed a class of space-division three-stage switching networks and proved 
strictly non-blocking conditions of such networks (Clos, 1953). These kind of switching 
fabrics are widely used and extensively studied as a scalable and modular architecture for 
the next generation switches/routers. The Clos switching fabric can achieve a nonblocking 
property with the smaller number of total crosspoints in the switching elements than 
crossbar switches. Nonblocking switching fabrics are divided into four classes: strictly 
nonblocking (SSNB), wide-sense nonblocking (WSNB), rearrageable nonblocking (RRNB) 
and repackably nonblocking (RPNB) (Kabacinski, 2005). SSNB and WSNB ensures, that any 
pair of idle input and output can be connected without changing any existing connections, 
but a special path set-up strategy must be used in WSNB networks. In RRNB and RPNB any 
such pair can be also connected, but it may be necessary to re-switch existing connections to 
other connecting paths. The difference is in time these reswitchings take place. In RRNB, 
when a new request arrives, and is blocked, an appropriate control algorithm is used to 
reswitch some of existing connections to unblock the new call. In RPNB, a new call can 
always be set up without reswitching of existing connections, but reswitching takes place 
when any of existing call is terminated. These reswitchings are done to prevent a switching 
fabric from blocking states before a new connection arrives. 
The three-stage Clos-network architecture is denoted by C(m, n, k), where parameters m, n, 
and k entirely determine the structure of the network. There are k input switches of capacity 
n  m in the first stage, m switches of capacity k  k in the second stage, and k output 
switches of capacity m  n in the third stage. The capacity of this switching system is N  N, 
where N = nk. The three-stage Clos switching fabric is strictly nonblocking if m  2n-1 and 
rearrangeable nonblocking if m  n. The three-stage Clos-network switch architecture may 
be categorized into two types: bufferless and buffered. The former one has no memory in 
any stage, and it is also referred to as the Space-Space-Space (S3) Clos-network switch, while 

 

the latter one employs shared memory modules in the first and third stages, and is referred 
to as the Memory-Space-Memory (MSM) Clos-network switch. The buffers in the second 
stage modules cause an out-of-sequence problem, so a re-sequencing function unit in the 
third stage modules is necessary but difficult to implement when the port speed increases. 
One disadvantage of the MSM architecture is that the first and third stages are both 
composed of shared-memory modules.  
We define the MSM Clos switching fabric based on the terminology used in (Oki at al., 
2002a) (see Fig. 4 and Table 1). 
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Fig. 4. The MSM Clos switching network 
 

Notation Description 
IM Input module at the first stage 
CM Central module at the second stage 
OM Output module at the third stage 
i IM number, where 0  i  k-1 
j OM number, where 0  j  k-1 
h Input/output port number in each IM/OM, where 0  h  n-1 
r CM number, where 0  r  m-1 
IM (i) The (i+1)th input module 
CM (r) The (r+1)th central module 
OM (j) The (j+1)th output module 
IP (i, h) The (h+1)th input port at IM(i) 
OP (j, h) The (h+1)th output port at OM(j) 
LI (i, r) Output link at IM(i) that is connected to CM(r) 
LC (r, j) Output link at CM(r) that is connected to OM(j) 
VOQ (i, j, h) Virtual output queue that stores cells from IM(i) to OP(j, h) 

Table 1. A notation for the MSM Clos switching fabric 
 
In the MSM Clos switching fabric architecture the first stage consists of k IMs, and each of 
them has an n  m dimension and nk VOQs to eliminate Head-Of-Line blocking. The second 
stage consists of m bufferless CMs, and each of them has a k  k dimension. The third stage 
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It is very difficult to implement such arbitration in the real environment because of time 
constraints. A central arbiter may also create a bottleneck due to time constraints as the 
switch size increases.  
Considerable work has been done on scheduling algorithms for the crossbar and three-stage 
Clos-network VOQ switches. Most of them achieve 100% throughput under the uniform 
traffic, but the throughput is usually reduced under the nonuniform traffic (Chao & Liu, 
2007). A switch can achieve 100% throughput under the uniform or nonuniform traffic if the 
switch is stable, as it was defined in (McKeown at al., 1999). In general, a switch is stable for 
a particular arrival process if the expected length of the input queues does not grow without 
limits. 
This chapter presents basic ideas concerning packet switching in next generation 
switches/routers. The simulation results obtained by us for the well known and new packet 
dispatching schemes for the three-stage buffered Clos-network switches are also shown and 
discussed. The remainder of the chapter is organized as follows: subchapter 2 introduces 
some background knowledge concerning the Clos-network switch that we refer to 
throughout this chapter; subchapter 3 presents packet dispatching schemes with distributed 
arbitration; subchapter 4 is devoted to dispatching schemes with centralized arbitration. A 
survey of related works is carried out in subchapter 5.  
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In 1953, Clos proposed a class of space-division three-stage switching networks and proved 
strictly non-blocking conditions of such networks (Clos, 1953). These kind of switching 
fabrics are widely used and extensively studied as a scalable and modular architecture for 
the next generation switches/routers. The Clos switching fabric can achieve a nonblocking 
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and repackably nonblocking (RPNB) (Kabacinski, 2005). SSNB and WSNB ensures, that any 
pair of idle input and output can be connected without changing any existing connections, 
but a special path set-up strategy must be used in WSNB networks. In RRNB and RPNB any 
such pair can be also connected, but it may be necessary to re-switch existing connections to 
other connecting paths. The difference is in time these reswitchings take place. In RRNB, 
when a new request arrives, and is blocked, an appropriate control algorithm is used to 
reswitch some of existing connections to unblock the new call. In RPNB, a new call can 
always be set up without reswitching of existing connections, but reswitching takes place 
when any of existing call is terminated. These reswitchings are done to prevent a switching 
fabric from blocking states before a new connection arrives. 
The three-stage Clos-network architecture is denoted by C(m, n, k), where parameters m, n, 
and k entirely determine the structure of the network. There are k input switches of capacity 
n  m in the first stage, m switches of capacity k  k in the second stage, and k output 
switches of capacity m  n in the third stage. The capacity of this switching system is N  N, 
where N = nk. The three-stage Clos switching fabric is strictly nonblocking if m  2n-1 and 
rearrangeable nonblocking if m  n. The three-stage Clos-network switch architecture may 
be categorized into two types: bufferless and buffered. The former one has no memory in 
any stage, and it is also referred to as the Space-Space-Space (S3) Clos-network switch, while 

 

the latter one employs shared memory modules in the first and third stages, and is referred 
to as the Memory-Space-Memory (MSM) Clos-network switch. The buffers in the second 
stage modules cause an out-of-sequence problem, so a re-sequencing function unit in the 
third stage modules is necessary but difficult to implement when the port speed increases. 
One disadvantage of the MSM architecture is that the first and third stages are both 
composed of shared-memory modules.  
We define the MSM Clos switching fabric based on the terminology used in (Oki at al., 
2002a) (see Fig. 4 and Table 1). 
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Notation Description 
IM Input module at the first stage 
CM Central module at the second stage 
OM Output module at the third stage 
i IM number, where 0  i  k-1 
j OM number, where 0  j  k-1 
h Input/output port number in each IM/OM, where 0  h  n-1 
r CM number, where 0  r  m-1 
IM (i) The (i+1)th input module 
CM (r) The (r+1)th central module 
OM (j) The (j+1)th output module 
IP (i, h) The (h+1)th input port at IM(i) 
OP (j, h) The (h+1)th output port at OM(j) 
LI (i, r) Output link at IM(i) that is connected to CM(r) 
LC (r, j) Output link at CM(r) that is connected to OM(j) 
VOQ (i, j, h) Virtual output queue that stores cells from IM(i) to OP(j, h) 

Table 1. A notation for the MSM Clos switching fabric 
 
In the MSM Clos switching fabric architecture the first stage consists of k IMs, and each of 
them has an n  m dimension and nk VOQs to eliminate Head-Of-Line blocking. The second 
stage consists of m bufferless CMs, and each of them has a k  k dimension. The third stage 
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consists of k OMs of capacity m  n, where each OP(j, h) has an output buffer. Each output 
buffer can receive at most m cells from m CMs, so a memory speedup is required here.  
Generally speaking, in the MSM Clos switching fabric architecture each VOQ(i, j, h) located 
in IM(i) stores cells going from IM(i) to OP(j, h) at OM(j). In one cell time slot VOQ can 
receive at most n cells from n input ports and send one cell to any CMs. A memory speedup 
of n is required here, because the rate of memory work has to be n times higher than the line 
rate. Each IM(i) has m output links connected to each CM(r), respectively. A CM(r) has k 
output links LC(r, j), which are connected to each OM(j), respectively. 
Input buffers located in IMs may be also arranged as follows: 
 An input buffer in each input port is divided into N parallel queues, each of them storing 

cells directed to different output ports. Each IM has nN VOQs, no memory speedup is 
required. 

 An input buffer in each IM is divided into k parallel queues, each of them storing cells 
destined to different OMs. Those queues will be called Virtual Output Module Queues 
(VOMQs), instead of VOQs. It is possible to arrange buffers in such way because OMs 
are nonblocking. Memory speedup of n is necessary here. In that case, there are less 
queues in each IMs but they are longer than VOQs. Each VOMQ(i, j) stores cells going 
from IM(i) to the OM(j). 

 Each input of an IM has k parallel queues, each of them storing cells destined to different 
OMs; we call it mVOMQs (multiple VOMQs). In each IM there are nk mVOMQs. This 
type of buffer arrangement eliminates a memory speedup. Each mVOMQ(i, j, h) stores 
cells going from IP(i, h) to the OM(j), h denotes the input port number or the number of a 
VOMQ group. 

Thanks to allocating buffers in the first and third stages the main switching problem in the 
three-stage buffered Clos-network switches lies in routes assignment between input and 
output modules.  

 
3. Packet dispatching algorithms with distributed arbitration 

The packet dispatching algorithms are responsible for choosing cells to be sent from the 
VOQs to the output buffers, and simultaneously for selecting connecting paths from IMs to 
OMs. Considerable work has been done on packet dispatching algorithms for the three-
stage buffered Clos-network switches. Unfortunately, the known optimal algorithms are too 
complex to implement at very high data rates, so sub-optimal, heuristic algorithms of lesser 
complexity, but also lesser performance, have to be used. The idea of three-phase algorithm, 
namely request-grant-accept, described by Hui and Arthurs (Hui & Arthus, 1987), is widely 
used by the packet dispatching algorithms with distributed arbitration. In this algorithm 
many request, grant and accept signals are sent between each input and output to do 
matching. In general, the three-phase algorithm works as follows: each unmatched input 
sends a request to every output for which it has a queued cell. If an unmatched output 
receives multiple requests, it grants one over all requests. If an input receives multiple 
grants, it accepts one and sends an accept signal to matched output. These three steps may 
be repeated in many iterations.  
The primary multiple-phase dispatching algorithms for the three-stage buffered Clos-
network switches were proposed in (Oki at al. 2002a). The basic idea of these algorithms is 
to use the effect of desynchronization of arbitration pointers and common request-grant-

 

accept handshaking scheme. The well known algorithm with multiple-phase iterations is the 
CRRD (Concurrent Round-Robin Dispatching). Other algorithms like the CMSD 
(Concurrent Master-Slave Round-Robin Dispatching) (Oki at al. 2002a), SRRD (Static Round-
Robin Dispatching) (Pun & Hamdi, 2004), and proposed by us in (Kleban & Wieczorek, 
2006) - CRRD-OG (Concurrent Round-Robin Dispatching with Open Grants) use the main 
idea of the CRRD scheme and try to improve results by implementing different mechanisms. 
We start to describe these algorithms with presentation of very simple scheme called 
Random Dispatching (RD).  

 
3.1 Random dispatching scheme 
Random selection as dispatching scheme is used by the ATLANTA switch developed by 
Lucent Technologies (Chao & Liu, 2007). An explanation of the basic concept of Random 
Dispatching (RD) scheme should help us to understand how the CRRD and CRRD-OG 
algorithms work. 
The basic idea of RD scheme is quite similar to the PIM (Parallel Iterative Matching) 
scheduling algorithm used in the single stage switches. In this scheme two phases are 
considered for dispatching from the first to second stages. In the first phase each IM 
randomly selects up to m VOQs and assigns them to IM output links. In the second phase 
requests associated with output links are sent from an IM to a CM. The arbitration results 
are sent from CMs to IMs, so the matching between IMs and CMs can be completed. If there 
is more than one request for the same output link in the CM, it grants one request randomly. 
In the next time slot the granted VOQs will transfer their cells to the corresponding OPs. 
In detail, the RD algorithm works as follows: 
 PHASE 1: Matching within IM: 

o Step 1: Each nonempty VOQ sends a request for candidate selection. 
o Step 2: The IM(i) selects up to m requests out of nk nonempty VOQs. A round-robin 

arbitration can be employed for this selection. 
 PHASE 2: Matching between IM and CM:  

o Step 1: A request that is associated with LI(i, r) is sent out to the corresponding CM(r). 
An arbiter that is associated with LC(r, j) selects one request among k and the CM(r) 
sends up to k grants, each of which is associated with one LC(r, j), to the 
corresponding IMs. 

o Step 2: If the VOQ at the IM receives the grant from the CM, it sends the 
corresponding cell at the next time slot. Otherwise, the VOQ will be a candidate 
again at step 2 in Phase 1 at the next time slot. 

It has been shown that a high switch throughput cannot be achieved due to the contention at 
the CM, unless the internal bandwidth is expanded. To achieve 100% throughput the 
expansion ratio m/n has to be set to at least: (1–1/e)-1  1,582 (Oki at al. 2002a). 

 
3.2 Concurrent Round-Robin Dispatching 
The Concurrent Round Robin Dispatching (CRRD) algorithm has been proposed to 
overcome the throughput limitation of the RD scheme. The basic idea of this algorithm is to 
use the desynchronization of arbitration pointers effect in the three-stage Clos-network 
switch. It is based on common request-grant-accept handshaking scheme and achieves 100% 
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consists of k OMs of capacity m  n, where each OP(j, h) has an output buffer. Each output 
buffer can receive at most m cells from m CMs, so a memory speedup is required here.  
Generally speaking, in the MSM Clos switching fabric architecture each VOQ(i, j, h) located 
in IM(i) stores cells going from IM(i) to OP(j, h) at OM(j). In one cell time slot VOQ can 
receive at most n cells from n input ports and send one cell to any CMs. A memory speedup 
of n is required here, because the rate of memory work has to be n times higher than the line 
rate. Each IM(i) has m output links connected to each CM(r), respectively. A CM(r) has k 
output links LC(r, j), which are connected to each OM(j), respectively. 
Input buffers located in IMs may be also arranged as follows: 
 An input buffer in each input port is divided into N parallel queues, each of them storing 

cells directed to different output ports. Each IM has nN VOQs, no memory speedup is 
required. 

 An input buffer in each IM is divided into k parallel queues, each of them storing cells 
destined to different OMs. Those queues will be called Virtual Output Module Queues 
(VOMQs), instead of VOQs. It is possible to arrange buffers in such way because OMs 
are nonblocking. Memory speedup of n is necessary here. In that case, there are less 
queues in each IMs but they are longer than VOQs. Each VOMQ(i, j) stores cells going 
from IM(i) to the OM(j). 

 Each input of an IM has k parallel queues, each of them storing cells destined to different 
OMs; we call it mVOMQs (multiple VOMQs). In each IM there are nk mVOMQs. This 
type of buffer arrangement eliminates a memory speedup. Each mVOMQ(i, j, h) stores 
cells going from IP(i, h) to the OM(j), h denotes the input port number or the number of a 
VOMQ group. 

Thanks to allocating buffers in the first and third stages the main switching problem in the 
three-stage buffered Clos-network switches lies in routes assignment between input and 
output modules.  

 
3. Packet dispatching algorithms with distributed arbitration 

The packet dispatching algorithms are responsible for choosing cells to be sent from the 
VOQs to the output buffers, and simultaneously for selecting connecting paths from IMs to 
OMs. Considerable work has been done on packet dispatching algorithms for the three-
stage buffered Clos-network switches. Unfortunately, the known optimal algorithms are too 
complex to implement at very high data rates, so sub-optimal, heuristic algorithms of lesser 
complexity, but also lesser performance, have to be used. The idea of three-phase algorithm, 
namely request-grant-accept, described by Hui and Arthurs (Hui & Arthus, 1987), is widely 
used by the packet dispatching algorithms with distributed arbitration. In this algorithm 
many request, grant and accept signals are sent between each input and output to do 
matching. In general, the three-phase algorithm works as follows: each unmatched input 
sends a request to every output for which it has a queued cell. If an unmatched output 
receives multiple requests, it grants one over all requests. If an input receives multiple 
grants, it accepts one and sends an accept signal to matched output. These three steps may 
be repeated in many iterations.  
The primary multiple-phase dispatching algorithms for the three-stage buffered Clos-
network switches were proposed in (Oki at al. 2002a). The basic idea of these algorithms is 
to use the effect of desynchronization of arbitration pointers and common request-grant-

 

accept handshaking scheme. The well known algorithm with multiple-phase iterations is the 
CRRD (Concurrent Round-Robin Dispatching). Other algorithms like the CMSD 
(Concurrent Master-Slave Round-Robin Dispatching) (Oki at al. 2002a), SRRD (Static Round-
Robin Dispatching) (Pun & Hamdi, 2004), and proposed by us in (Kleban & Wieczorek, 
2006) - CRRD-OG (Concurrent Round-Robin Dispatching with Open Grants) use the main 
idea of the CRRD scheme and try to improve results by implementing different mechanisms. 
We start to describe these algorithms with presentation of very simple scheme called 
Random Dispatching (RD).  

 
3.1 Random dispatching scheme 
Random selection as dispatching scheme is used by the ATLANTA switch developed by 
Lucent Technologies (Chao & Liu, 2007). An explanation of the basic concept of Random 
Dispatching (RD) scheme should help us to understand how the CRRD and CRRD-OG 
algorithms work. 
The basic idea of RD scheme is quite similar to the PIM (Parallel Iterative Matching) 
scheduling algorithm used in the single stage switches. In this scheme two phases are 
considered for dispatching from the first to second stages. In the first phase each IM 
randomly selects up to m VOQs and assigns them to IM output links. In the second phase 
requests associated with output links are sent from an IM to a CM. The arbitration results 
are sent from CMs to IMs, so the matching between IMs and CMs can be completed. If there 
is more than one request for the same output link in the CM, it grants one request randomly. 
In the next time slot the granted VOQs will transfer their cells to the corresponding OPs. 
In detail, the RD algorithm works as follows: 
 PHASE 1: Matching within IM: 

o Step 1: Each nonempty VOQ sends a request for candidate selection. 
o Step 2: The IM(i) selects up to m requests out of nk nonempty VOQs. A round-robin 

arbitration can be employed for this selection. 
 PHASE 2: Matching between IM and CM:  

o Step 1: A request that is associated with LI(i, r) is sent out to the corresponding CM(r). 
An arbiter that is associated with LC(r, j) selects one request among k and the CM(r) 
sends up to k grants, each of which is associated with one LC(r, j), to the 
corresponding IMs. 

o Step 2: If the VOQ at the IM receives the grant from the CM, it sends the 
corresponding cell at the next time slot. Otherwise, the VOQ will be a candidate 
again at step 2 in Phase 1 at the next time slot. 

It has been shown that a high switch throughput cannot be achieved due to the contention at 
the CM, unless the internal bandwidth is expanded. To achieve 100% throughput the 
expansion ratio m/n has to be set to at least: (1–1/e)-1  1,582 (Oki at al. 2002a). 

 
3.2 Concurrent Round-Robin Dispatching 
The Concurrent Round Robin Dispatching (CRRD) algorithm has been proposed to 
overcome the throughput limitation of the RD scheme. The basic idea of this algorithm is to 
use the desynchronization of arbitration pointers effect in the three-stage Clos-network 
switch. It is based on common request-grant-accept handshaking scheme and achieves 100% 
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throughput under uniform traffic. To easily obtain pointers desynchronization effect the 
VOQ(i, j, h) in the IM(i) are rearranged for dispatching as follows: 
 
VOQ(i, 0, 0), VOQ(i, 1, 0), VOQ(i, 2, 0), ... , VOQ(i, k-1, 0) 
VOQ(i, 0, 1), VOQ(i, 1, 1), VOQ(i, 2, 1), ... , VOQ(i, k-1, 1) 
... 
VOQ(i, 0, n-1), VOQ(i, 1, n-1), VOQ(i, 2, n-1) ,..., VOQ(i, k-1, n-1) 
Therefore, VOQ(i, j, h) is redefined as VOQ(i, v), where v = hk + j and 0  v  nk – 1. 
Each IM(i) has m output link round-robin arbiters and nk VOQ round-robin arbiters. An 
output link arbiter associated with LI(i, r) has its own pointer PL(i, r). A VOQ arbiter 
associated with the VOQ(i, v) has its own pointer PV(i, v). In CM(r), there are k round robin 
arbiters, each of which corresponds to LC(r, j) – an output link to the OM(j) – and has its 
own pointer PC(r, j). 
The CRRD algorithm completes the matching process in two phases. In Phase 1 at most m 
VOQs are selected as candidates, and the selected VOQ is assigned to an IM output link. An 
iterative matching with round-robin arbiters is adopted within the IM(i) to determine the 
matching between a request from the VOQ(i, v) and the output link LI(i, r). This matching is 
similar to the iSLIP approach (Chao & Liu, 2007). In Phase 2, each selected VOQ that is 
associated with each IM output link sends a request from an IM to a CM. The CMs respond 
with the arbitration results to IMs so that the matching between IMs and CMs can be done. 
The pointers PL(i, r) and PV(i, v) in the IM(i) and PC(r, j) in the CM(r) are updated to one 
position after the granted position, only if the matching within the IM is achieved at the first 
iteration on Phase 1 and the request is also granted by the CM in Phase 2. 
It was shown that there is a noticeable improvement in the cell average delay by increasing 
the number of iterations in each IM. However, the number of iterations is limited by the 
arbitration time in advance. Simulation results obtained by us shown that the optimal 
number of iterations in the IM is n/2 and more iterations do not produce a measurable 
improvement. 
The CRRD algorithm works as follows: 
 PHASE 1: Matching within IM 

First iteration: 
o Step 1: Request: Each nonempty VOQ(i, v) sends a request to every arbiter of the 

output link LI(i, r) within IM(i). 
o Step 2: Grant: Each arbiter of the output link LI(i, r) chooses one VOQ request in a 

round-robin fashion and sends the grant to the selected VOQ. It starts searching from 
the position of PL(i, r).  

o Step 3: Accept: Each arbiter of VOQ(i, v) chooses one grant in a round-robin fashion 
and sends the accept to the matched output link LI(i, r). It starts searching from the 
position of PV(i, v). 

i-th iteration (i>1): 
o Step 1: Each unmatched VOQ(i, v) at the previous iterations sends another request to 

all unmatched output link arbiters. 
o Step 2 and 3: These steps are the same as in the first iteration. 

 PHASE 2: Matching between IM and CM 
o Step 1: Request: Each selected in Phase 1 IM output link LI(i, r) sends the request to 

CM(r) jth output link LC(r, j). 

 

o Step 2: Grant: Each round-robin arbiter associated with output link LC(r, j) chooses 
one request by searching from the position of PC(r, j), and sends the grant to the 
matched output link LI(i, r) of IM(i). 

o Step 3: Accept: If the LI(i, r) receives the grant from the LC(r, j) it sends the cell from 
the matched VOQ(i, v) to the OP(j, h) through the CM(r) at the next time slot. The IM 
cannot send the cell without receiving the grant. Not granted requests from the CM 
will be again attempted to be matched at the next time slot because the round-robin 
pointers are updated to one position after the granted position only if the matching 
within IM is achieved in Phase 1 and the request is also granted by the CM in  
Phase 2. 

 
3.3 Concurrent Round-Robin Dispatching with Open Grants 
The Concurrent Round-Robin Dispatching with Open Grants (CRRD-OG) algorithm is an 
improved version of the CRRD scheme in terms of the number of iterations which are 
necessary to achieve better results. In the CRRD-OG algorithm a mechanism of open grants 
is implemented. An open grant is sent by a CM to an IM and contains information about 
unmatched link from the second to the third stage. In other words, the IM(i) is informed 
about unmatched output link LC(r, j) to the OM(j). The open grant is sent by each 
unmatched output link LC(r, j). Due to the architecture of the three-stage Clos switching 
fabric is clearly defined, it is also information about output port numbers, which can be 
reached using the output j of the CM(r). On the basis of this information the IM(i) looks up 
through VOQs and searches a cell which is destined to any output of the OM(j). If such cell 
exists it will be sent at the next time slot. To support the process of searching the proper cell 
to be sent to the OM(j) each IM has k open grant arbiters with POG(i, j) pointers. Each arbiter 
is associated with the OM(j) accessible by the output link LC(r, j) of the CM(r). The POG(i, j) 
pointer is used to search VOQs located at each input port according to the round robin 
routine.  
In the CRRD-OG algorithm two phases are necessary to complete matching process. Phase 1 
is the same as in the CRRD algorithm. In Phase 2 the CRRD-OG algorithm works as follows: 
 PHASE 2: Matching between IM and CM 

o Step 1: Request: Each selected in Phase 1 IM output link LI(i, r) sends the request to 
the CM(r) jth output link LC(r, j). 

o Step 2: Grant: Each round-robin arbiter associated with the output link LC(r, j) 
chooses one request by searching from the position of PC(r, j), and sends the grant to 
the matched LI(i, r) of IM(i). 

o Step 3: Open Grant: If after step 2, the unmatched output links LC(r, j) still exist, each 
unmatched output link LC(r, j) sends the open grant to the output link LI(i, r) of the 
IM(i). The open grant contains the idle output’s number of the CM module, which 
simultaneously determine the OM(j) and accessible outputs of the Clos switching 
fabric. 

o Step 4: If the LI(i, r) receives the grant from the LC(r, j) it sends the cell, at the next 
time slot, from the matched VOQ(i, v) to the OP(j, h) through the CM(r). If the LI(i, r) 
receives the open grant from the LC(r, j) the open grant arbiter has to choose one cell, 
which is destined to OM(j) and sends it at the next time slot. The open grant arbiter 
starts to go through the VOQs looking for the proper cell from the position shown by 
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throughput under uniform traffic. To easily obtain pointers desynchronization effect the 
VOQ(i, j, h) in the IM(i) are rearranged for dispatching as follows: 
 
VOQ(i, 0, 0), VOQ(i, 1, 0), VOQ(i, 2, 0), ... , VOQ(i, k-1, 0) 
VOQ(i, 0, 1), VOQ(i, 1, 1), VOQ(i, 2, 1), ... , VOQ(i, k-1, 1) 
... 
VOQ(i, 0, n-1), VOQ(i, 1, n-1), VOQ(i, 2, n-1) ,..., VOQ(i, k-1, n-1) 
Therefore, VOQ(i, j, h) is redefined as VOQ(i, v), where v = hk + j and 0  v  nk – 1. 
Each IM(i) has m output link round-robin arbiters and nk VOQ round-robin arbiters. An 
output link arbiter associated with LI(i, r) has its own pointer PL(i, r). A VOQ arbiter 
associated with the VOQ(i, v) has its own pointer PV(i, v). In CM(r), there are k round robin 
arbiters, each of which corresponds to LC(r, j) – an output link to the OM(j) – and has its 
own pointer PC(r, j). 
The CRRD algorithm completes the matching process in two phases. In Phase 1 at most m 
VOQs are selected as candidates, and the selected VOQ is assigned to an IM output link. An 
iterative matching with round-robin arbiters is adopted within the IM(i) to determine the 
matching between a request from the VOQ(i, v) and the output link LI(i, r). This matching is 
similar to the iSLIP approach (Chao & Liu, 2007). In Phase 2, each selected VOQ that is 
associated with each IM output link sends a request from an IM to a CM. The CMs respond 
with the arbitration results to IMs so that the matching between IMs and CMs can be done. 
The pointers PL(i, r) and PV(i, v) in the IM(i) and PC(r, j) in the CM(r) are updated to one 
position after the granted position, only if the matching within the IM is achieved at the first 
iteration on Phase 1 and the request is also granted by the CM in Phase 2. 
It was shown that there is a noticeable improvement in the cell average delay by increasing 
the number of iterations in each IM. However, the number of iterations is limited by the 
arbitration time in advance. Simulation results obtained by us shown that the optimal 
number of iterations in the IM is n/2 and more iterations do not produce a measurable 
improvement. 
The CRRD algorithm works as follows: 
 PHASE 1: Matching within IM 

First iteration: 
o Step 1: Request: Each nonempty VOQ(i, v) sends a request to every arbiter of the 

output link LI(i, r) within IM(i). 
o Step 2: Grant: Each arbiter of the output link LI(i, r) chooses one VOQ request in a 

round-robin fashion and sends the grant to the selected VOQ. It starts searching from 
the position of PL(i, r).  

o Step 3: Accept: Each arbiter of VOQ(i, v) chooses one grant in a round-robin fashion 
and sends the accept to the matched output link LI(i, r). It starts searching from the 
position of PV(i, v). 

i-th iteration (i>1): 
o Step 1: Each unmatched VOQ(i, v) at the previous iterations sends another request to 

all unmatched output link arbiters. 
o Step 2 and 3: These steps are the same as in the first iteration. 

 PHASE 2: Matching between IM and CM 
o Step 1: Request: Each selected in Phase 1 IM output link LI(i, r) sends the request to 

CM(r) jth output link LC(r, j). 

 

o Step 2: Grant: Each round-robin arbiter associated with output link LC(r, j) chooses 
one request by searching from the position of PC(r, j), and sends the grant to the 
matched output link LI(i, r) of IM(i). 

o Step 3: Accept: If the LI(i, r) receives the grant from the LC(r, j) it sends the cell from 
the matched VOQ(i, v) to the OP(j, h) through the CM(r) at the next time slot. The IM 
cannot send the cell without receiving the grant. Not granted requests from the CM 
will be again attempted to be matched at the next time slot because the round-robin 
pointers are updated to one position after the granted position only if the matching 
within IM is achieved in Phase 1 and the request is also granted by the CM in  
Phase 2. 

 
3.3 Concurrent Round-Robin Dispatching with Open Grants 
The Concurrent Round-Robin Dispatching with Open Grants (CRRD-OG) algorithm is an 
improved version of the CRRD scheme in terms of the number of iterations which are 
necessary to achieve better results. In the CRRD-OG algorithm a mechanism of open grants 
is implemented. An open grant is sent by a CM to an IM and contains information about 
unmatched link from the second to the third stage. In other words, the IM(i) is informed 
about unmatched output link LC(r, j) to the OM(j). The open grant is sent by each 
unmatched output link LC(r, j). Due to the architecture of the three-stage Clos switching 
fabric is clearly defined, it is also information about output port numbers, which can be 
reached using the output j of the CM(r). On the basis of this information the IM(i) looks up 
through VOQs and searches a cell which is destined to any output of the OM(j). If such cell 
exists it will be sent at the next time slot. To support the process of searching the proper cell 
to be sent to the OM(j) each IM has k open grant arbiters with POG(i, j) pointers. Each arbiter 
is associated with the OM(j) accessible by the output link LC(r, j) of the CM(r). The POG(i, j) 
pointer is used to search VOQs located at each input port according to the round robin 
routine.  
In the CRRD-OG algorithm two phases are necessary to complete matching process. Phase 1 
is the same as in the CRRD algorithm. In Phase 2 the CRRD-OG algorithm works as follows: 
 PHASE 2: Matching between IM and CM 

o Step 1: Request: Each selected in Phase 1 IM output link LI(i, r) sends the request to 
the CM(r) jth output link LC(r, j). 

o Step 2: Grant: Each round-robin arbiter associated with the output link LC(r, j) 
chooses one request by searching from the position of PC(r, j), and sends the grant to 
the matched LI(i, r) of IM(i). 

o Step 3: Open Grant: If after step 2, the unmatched output links LC(r, j) still exist, each 
unmatched output link LC(r, j) sends the open grant to the output link LI(i, r) of the 
IM(i). The open grant contains the idle output’s number of the CM module, which 
simultaneously determine the OM(j) and accessible outputs of the Clos switching 
fabric. 

o Step 4: If the LI(i, r) receives the grant from the LC(r, j) it sends the cell, at the next 
time slot, from the matched VOQ(i, v) to the OP(j, h) through the CM(r). If the LI(i, r) 
receives the open grant from the LC(r, j) the open grant arbiter has to choose one cell, 
which is destined to OM(j) and sends it at the next time slot. The open grant arbiter 
starts to go through the VOQs looking for the proper cell from the position shown by 
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the POG(i, k) pointer. The IM cannot send the cell without receiving the grant or the 
open grant. Not granted requests will be again attempted to be matched at the next 
time slot because the pointers are updated only if the matching is achieved. If the cell 
is sent as a reaction to the open grant the pointers are updated under the following 
conditions:  
 if the pointer PL(i, r) points the VOQ which sent the cell, it is updated; 
 if the pointer PV(i, v) points the output used to sent the cell, it is updated; 
 if the pointer PC(r, j) points the link LI(i, r) used to sent the open grant, it is 

updated. 
 
Fig. 5-10 illustrates the details of the CRRD-OG algorithm by showing an example for the 
Clos network C(3, 3, 3). 

 PHASE 1: Matching within IM(2) (one iteration). 
o Step 1: The nonempty VOQs: VOQ(2, 0), VOQ(2, 2), VOQ(2, 3), VOQ(2, 4), and 

VOQ(2, 8) send requests to all output link arbiters (Fig. 5). 
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Fig. 5. Nonempty VOQs send requests to all output link arbiters 
 

o Step 2: Output link arbiters associated with LI(2, 0), LI(2, 1) and LI(2, 2) select 
VOQ(2, 0), VOQ(2, 2) and VOQ(2, 3) respectively, according to their pointers position 
and send grants to them (Fig. 6). 
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Fig. 6. Output link arbiters send grants to selected VOQs 
 

o Step 3. Each selected VOQ: VOQ(2, 0), VOQ(2, 2) and VOQ(2, 3), receives only one 
grant, and sends accept to the proper output link arbiter (Fig. 7).  
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Fig. 7. VOQs send accept to chosen output link arbiters 
 
 PHASE 2: Matching between IM and CM (as an example we consider the state in CM(2)). 

o Step 1. In this step the output links of CM(2) receive requests from the output links of 
IMs matched in Phase 1. The requests are as follows: LC(2, 0), LC(2, 1), LC(2, 0) (Fig. 
8).  
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Fig. 8. Output link arbiters of the CM(2) receive requests 
 

o Step 2. The output link arbiter LC(2, 0) receives two requests from IM(0) and IM(2), 
and selects the request from IM(0), according to the pointer position. The output link 
arbiter LC(2, 1) selects request from IM(2). Output links arbiters:  
LC(2, 0) and LC(2, 1) send grants to IM(0) and IM(1) respectively. 

o Step 3. The output link arbiter LC(2, 2) does not receive a request, so it sends open 
grant to IM(2) (Fig. 9). 
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Fig. 9. The output port arbiter LC(2, 2) sends the open grant to LI (2, 2) 
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the POG(i, k) pointer. The IM cannot send the cell without receiving the grant or the 
open grant. Not granted requests will be again attempted to be matched at the next 
time slot because the pointers are updated only if the matching is achieved. If the cell 
is sent as a reaction to the open grant the pointers are updated under the following 
conditions:  
 if the pointer PL(i, r) points the VOQ which sent the cell, it is updated; 
 if the pointer PV(i, v) points the output used to sent the cell, it is updated; 
 if the pointer PC(r, j) points the link LI(i, r) used to sent the open grant, it is 

updated. 
 
Fig. 5-10 illustrates the details of the CRRD-OG algorithm by showing an example for the 
Clos network C(3, 3, 3). 

 PHASE 1: Matching within IM(2) (one iteration). 
o Step 1: The nonempty VOQs: VOQ(2, 0), VOQ(2, 2), VOQ(2, 3), VOQ(2, 4), and 

VOQ(2, 8) send requests to all output link arbiters (Fig. 5). 
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o Step 2: Output link arbiters associated with LI(2, 0), LI(2, 1) and LI(2, 2) select 
VOQ(2, 0), VOQ(2, 2) and VOQ(2, 3) respectively, according to their pointers position 
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o Step 3. Each selected VOQ: VOQ(2, 0), VOQ(2, 2) and VOQ(2, 3), receives only one 
grant, and sends accept to the proper output link arbiter (Fig. 7).  
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 PHASE 2: Matching between IM and CM (as an example we consider the state in CM(2)). 

o Step 1. In this step the output links of CM(2) receive requests from the output links of 
IMs matched in Phase 1. The requests are as follows: LC(2, 0), LC(2, 1), LC(2, 0) (Fig. 
8).  
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o Step 2. The output link arbiter LC(2, 0) receives two requests from IM(0) and IM(2), 
and selects the request from IM(0), according to the pointer position. The output link 
arbiter LC(2, 1) selects request from IM(2). Output links arbiters:  
LC(2, 0) and LC(2, 1) send grants to IM(0) and IM(1) respectively. 

o Step 3. The output link arbiter LC(2, 2) does not receive a request, so it sends open 
grant to IM(2) (Fig. 9). 
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o Step 4. IM(2) receives the open grant from LC(2, 2), which means that it is possible to 
send one cell to OP(2, h). It chooses a cell from VOQ(2, 8). The cell is destined to 
OP(2, 2) (Fig. 10), and is sent at the next time slot, together with other cells from IMs 
to OMs through CMs. 
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Fig. 10. The cell from VOQ(2, 8) is matched with LI(2, 2), as a reaction to the open grant 
received from LC(2, 2) 

 
3.4 Concurrent Master-Slave Round-Robin Dispatching Scheme 
The Concurrent Master-Slave Round-Robin Dispatching (CMSD) algorithm is an improved 
version of the CRRD algorithm. It preserves all advantages of the CRRD scheme but more 
arbiters are used to perform the iterative matching process within the IMs. Two sets of 
round-robin arbiters (master and slave) are employed to perform hierarchical round-robin 
arbitration process in the first stage of the Clos-network switch. Each output link of IMs is 
associated with one master and k slaves arbiters. To describe the CMSD algorithm we define 
several notations based on the terminology used in (Oki at al., 2002a). A VOQ group that 
consists of n VOQs storing cells from IM(i) to OM(j) is denoted by G(i, j). Each IM has m 
master output-link round robin arbiters, denoted as ML(i, r), mk slave output-link round-
robin arbiters, denoted as SL(i, j, r), and nk VOQ round-robin arbiters. Each master arbiter 
associated with LI(i, r) has its own pointer PML(i, r). Each slave arbiter associated with  
LI(i, r) and G(i, j) has its own pointer PSL(i, j, r). Each VOQ arbiter associated with  
VOQ(i, j, h) has its own pointer PV(i, j, h). The master arbiter is responsible for selection of 
one nonempty G(i, j) group, while the slave arbiter selects one nonempty VOQ within that 
VOQ group.  
The CMSD algorithm works as follows: 
 PHASE 1: Matching within IM 

First iteration: 
o Step 1: Request: Two sets of requests are sent to the output link arbiters. The group-

level request are sent from G(i, j) that has at least one non-empty VOQ to every  
master arbiter ML(i, r). At the same time, each nonempty VOQ(i, j, h) sends a request 
to every slave arbiter SL(i, j, r). 

o Step 2: Grant: Each round-robin master arbiter ML(i, r) chooses a request by searching 
from the position of PML(i, r). At the same time, each slave arbiter selects one VOQ 
request in a round-robin fashion by searching from the position of PSL(i, j, r). The 
slave arbiter SL(i, j, r) will send the grant to the selected VOQ only if G(i, j) has been 

 

selected by its master arbiter. If SL(i, j, r) does not receive a grant, the search is 
invalid.  

o Step 3: Accept: Each VOQ arbiter searches in a round-robin fashion one grant, among 
all those received, and sends the accept to the master and slave output-link arbiters. 
Each arbiter starts searching a grant from the position of PV(i, j, h).  

i-th iteration (i>1): 
o Step 1: Each VOQ(i, j, h) unmatched at the previous iterations sends another request 

to the slave arbiters. The group G(i, j), which has at least one unmatched nonempty 
VOQ sends a request to the master arbiters. 

o Step 2 and 3: These steps are the same as in the first iteration. 
 PHASE 2: Matching between IM and CM – the matching procedure is the same as in the 

CRRD algorithm.  
All the round-robin pointers located in IM(i) (namely: PML(i, r), PSL(i, j, r) and PV(i, j, h)) 
and in CM(r) (namely: PC(r, j)) are updated to one position after the granted position only if 
the matching is achieved at Phase 1 and the request is also granted at Phase 2. The CMSD 
algorithm can very easily achieve the desynchronization effect of all round-robin pointers, 
so it can provide high throughput without expansion under the uniform traffic. 

 
3.5 Static Round-Robin Dispatching 
The Static Round-Robin Dispatching (SRRD) algorithm was proposed by K. Pun and M. 
Hamdi, and is an adaptation of the Static Round-Robin (SRR) scheme for the MSM Clos-
network switches. The SRR algorithm was first introduced by Jiang and Hamdi in (Jiang & 
Hamdi, 2001) for crossbar switches and uses the same handshaking scheme as in the iSlip or 
DRRM scheme (Chao & Liu, 2007). The algorithm is simple and can achieve very good delay 
performance. In this algorithm the arbitration pointers are artificially set to be desynchro-
nized at the beginning, and are updated in a static way to keep them desynchronized all the 
time. Additionally, the grant and accept pointers are “mutual matched”. That is, if grant 
pointer gj in output j is pointing to input i, then accept pointer ai in input i must point to 
output j. The matching sequence in SRR scheme is shown in Fig. 11. This allows the 
maximum matching from input ports to output ports if all VOQs have a cell to be sent.  
The SRRD scheme works in the same way as the CMSD scheme, which means that the 
phases and steps are in both algorithms identical except the pointer initialization and 
pointer updating. The initial values of the pointers are as follows: PV(i, j, h)=h, PSL(i, j, r)=r, 
PML(i, r)=(i+r)%k and PC(r, j)=i if PML(i, r)=j. The pointers PML(i, r) and PC(r, j) are always 
incremented by one (mod k), but the pointers PV(i, j, h) and PSL(i, j, r) remain unchanged, 
no matter there is a match or not.  

 
Fig. 11. Matching sequence in SRR algorithm 
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o Step 4. IM(2) receives the open grant from LC(2, 2), which means that it is possible to 
send one cell to OP(2, h). It chooses a cell from VOQ(2, 8). The cell is destined to 
OP(2, 2) (Fig. 10), and is sent at the next time slot, together with other cells from IMs 
to OMs through CMs. 

VOQ (2, 0)
VOQ (2, 1)
VOQ (2, 2)
VOQ (2, 3)
VOQ (2, 4)
VOQ (2, 5)
VOQ (2, 6)
VOQ (2, 7)
VOQ (2, 8)

LI (2, 0)

LI (2, 1)

LI (2, 2)

IM (2)

Open Grant   

Fig. 10. The cell from VOQ(2, 8) is matched with LI(2, 2), as a reaction to the open grant 
received from LC(2, 2) 

 
3.4 Concurrent Master-Slave Round-Robin Dispatching Scheme 
The Concurrent Master-Slave Round-Robin Dispatching (CMSD) algorithm is an improved 
version of the CRRD algorithm. It preserves all advantages of the CRRD scheme but more 
arbiters are used to perform the iterative matching process within the IMs. Two sets of 
round-robin arbiters (master and slave) are employed to perform hierarchical round-robin 
arbitration process in the first stage of the Clos-network switch. Each output link of IMs is 
associated with one master and k slaves arbiters. To describe the CMSD algorithm we define 
several notations based on the terminology used in (Oki at al., 2002a). A VOQ group that 
consists of n VOQs storing cells from IM(i) to OM(j) is denoted by G(i, j). Each IM has m 
master output-link round robin arbiters, denoted as ML(i, r), mk slave output-link round-
robin arbiters, denoted as SL(i, j, r), and nk VOQ round-robin arbiters. Each master arbiter 
associated with LI(i, r) has its own pointer PML(i, r). Each slave arbiter associated with  
LI(i, r) and G(i, j) has its own pointer PSL(i, j, r). Each VOQ arbiter associated with  
VOQ(i, j, h) has its own pointer PV(i, j, h). The master arbiter is responsible for selection of 
one nonempty G(i, j) group, while the slave arbiter selects one nonempty VOQ within that 
VOQ group.  
The CMSD algorithm works as follows: 
 PHASE 1: Matching within IM 

First iteration: 
o Step 1: Request: Two sets of requests are sent to the output link arbiters. The group-

level request are sent from G(i, j) that has at least one non-empty VOQ to every  
master arbiter ML(i, r). At the same time, each nonempty VOQ(i, j, h) sends a request 
to every slave arbiter SL(i, j, r). 

o Step 2: Grant: Each round-robin master arbiter ML(i, r) chooses a request by searching 
from the position of PML(i, r). At the same time, each slave arbiter selects one VOQ 
request in a round-robin fashion by searching from the position of PSL(i, j, r). The 
slave arbiter SL(i, j, r) will send the grant to the selected VOQ only if G(i, j) has been 

 

selected by its master arbiter. If SL(i, j, r) does not receive a grant, the search is 
invalid.  

o Step 3: Accept: Each VOQ arbiter searches in a round-robin fashion one grant, among 
all those received, and sends the accept to the master and slave output-link arbiters. 
Each arbiter starts searching a grant from the position of PV(i, j, h).  

i-th iteration (i>1): 
o Step 1: Each VOQ(i, j, h) unmatched at the previous iterations sends another request 

to the slave arbiters. The group G(i, j), which has at least one unmatched nonempty 
VOQ sends a request to the master arbiters. 

o Step 2 and 3: These steps are the same as in the first iteration. 
 PHASE 2: Matching between IM and CM – the matching procedure is the same as in the 

CRRD algorithm.  
All the round-robin pointers located in IM(i) (namely: PML(i, r), PSL(i, j, r) and PV(i, j, h)) 
and in CM(r) (namely: PC(r, j)) are updated to one position after the granted position only if 
the matching is achieved at Phase 1 and the request is also granted at Phase 2. The CMSD 
algorithm can very easily achieve the desynchronization effect of all round-robin pointers, 
so it can provide high throughput without expansion under the uniform traffic. 

 
3.5 Static Round-Robin Dispatching 
The Static Round-Robin Dispatching (SRRD) algorithm was proposed by K. Pun and M. 
Hamdi, and is an adaptation of the Static Round-Robin (SRR) scheme for the MSM Clos-
network switches. The SRR algorithm was first introduced by Jiang and Hamdi in (Jiang & 
Hamdi, 2001) for crossbar switches and uses the same handshaking scheme as in the iSlip or 
DRRM scheme (Chao & Liu, 2007). The algorithm is simple and can achieve very good delay 
performance. In this algorithm the arbitration pointers are artificially set to be desynchro-
nized at the beginning, and are updated in a static way to keep them desynchronized all the 
time. Additionally, the grant and accept pointers are “mutual matched”. That is, if grant 
pointer gj in output j is pointing to input i, then accept pointer ai in input i must point to 
output j. The matching sequence in SRR scheme is shown in Fig. 11. This allows the 
maximum matching from input ports to output ports if all VOQs have a cell to be sent.  
The SRRD scheme works in the same way as the CMSD scheme, which means that the 
phases and steps are in both algorithms identical except the pointer initialization and 
pointer updating. The initial values of the pointers are as follows: PV(i, j, h)=h, PSL(i, j, r)=r, 
PML(i, r)=(i+r)%k and PC(r, j)=i if PML(i, r)=j. The pointers PML(i, r) and PC(r, j) are always 
incremented by one (mod k), but the pointers PV(i, j, h) and PSL(i, j, r) remain unchanged, 
no matter there is a match or not.  

 
Fig. 11. Matching sequence in SRR algorithm 
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The SRRD scheme can always achieve 100% throughput under the uniform traffic. 
Unfortunately, due to several arbiters may grant the same request at the same time, the 
performance under nonuniform traffic is degraded. This phenomenon appears because all 
conventional arbiters search in clock-wise direction. To improve the performance of the 
MSM Clos switch under the nonuniform traffic distribution patterns it is necessary to allow 
some round-robin arbiters to search the requests in clockwise direction and anti-clockwise 
direction alternatively, each for one time slot. The 0/1 counter is necessary to keep track of 
time. The counter is incremented by one (mod 2) in each time slot. If counter shows 0 the 
master arbiter ML(i, r) searches one request in clockwise round-robin fashion, otherwise if 
counter shows 1, the master arbiter searches one request in anti-clockwise round-robin 
fashion. 

 
3.6 Performance of CRRD, CMSD, SRRD and CRRD-OG algorithms 

A. Packet Arrival Models 
Two packet arrival models namely the Bernoulli and bursty are considered in simulation 
experiments. In the Bernoulli arrival model cells arrive at each input in slot-by-slot manner 
and the probability that there is a cell arriving in each time slot is identical and independent 
of any other slot. The probability that a cell may arrive in a time slot is denoted by p and is 
referred to as the load of the input. This type of traffic defines a memoryless random arrival 
pattern. 
In the bursty traffic model, each input alternates between active and idle periods. During 
active periods, cells destined for the same output arrive continuously in consecutive time 
slots. The average burst (active period) length is set to 16 cells in our simulations. 
 
B. Traffic distribution models 
We consider several traffic distribution models which determine the probability that a cell 
which arrives at an input will be directed to a certain output. The considered traffic models 
are: 
Uniform traffic – this type of traffic is the most commonly used traffic profile. In the 
uniformly distributed traffic probability pij that a packet from input i will be directed to 
output j is uniformly distributed through all outputs, i.e.: 
 
 = 8  (1) 
 
Trans-diagonal traffic – in this traffic model some outputs have a higher probability of being 
selected, and respective probability pij was calculated according to the following equation: 
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Bi-diagonal traffic – is very similar to the trans-diagonal traffic but packets are directed to 
one of two outputs, and respective probability pij was calculated according to the following 
equation: 
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Chang’s traffic – this model is defined as: 
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The experiments have been carried out for the MSM Clos switching fabric of size 64  64 - 
C(8, 8, 8), and for a wide range of traffic load per input port: from p = 0.05 to p = 1, with the 
step 0.05. The 95% confidence intervals that have been calculated after t-student distribution 
for ten series, per 55000 cycles each (after the starting phase comprising 15000 cycles, which 
enables to reach the stable state of the switching fabric), are at least one order lower than the 
mean value of the simulation results, therefore they are not shown in the figures. We have 
evaluated two performance measures: the average cell delay in time slots and the maximum 
VOQs size for the CRRD, CMSD, SRRD, and CRRD-OG algorithms. The results of the 
simulation under 1 and/or 4 iterations (represented in figures by itr) are shown in the charts 
(Fig. 12-21). In any case, the number of iterations between any IM and CM is one. 
Fig. 12, 14, 16, 18 show the average cell delay in time slots obtained for the uniform, 
Chang’s, trans-diagonal and bi-diagonal traffic patterns, whereas Fig. 13, 15, 17, 19 show the 
maximum VOQ size in a number of cells. To make the charts more clear and lucid only 
results for itr=4 are shown in figures concerning the maximum VOQ size. Fig. 20 and 21 
show the results for the bursty traffic with the average burst length set to 16 cells.  
We can observe that using the Bernoulli traffic and all investigated traffic distribution 
patterns the CRRD-OG algorithm provides better performance than the CRRD, CMSD and 
SRRD algorithms. In many cases the CRRD-OG algorithm with one iteration delivers better 
performance than other algorithms with four iterations (see Fig. 12, 14, 16). The same 
relation between the CRRD-OG scheme and others schemes we can notice under the bursty 
traffic (Fig. 20). 
Under the uniform traffic the SRRD scheme gives only slightly worse results than the 
CRRD-OG scheme; the worst result gives pure CRRD algorithm. The same relation we can 
see in Fig. 13 which shows the comparison of the maximum VOQ size. The biggest buffers 
we need if we control the MSM Clos-network switch using the CRRD algorithm. The 
Chang’s distribution traffic pattern is very similar to the uniform distribution traffic pattern. 
Under this traffic distribution pattern all algorithms receive 100% throughput and CRRD-
OG scheme with one iteration delivers better performance than other algorithms with four 
iterations for the cell delay as well as the maximal VOQ size. (Fig. 14, 15). The trans-diagonal 
and bi-diagonal traffic distribution patterns are highly demanding and the investigated 
packet dispatching schemes cannot provide the 100% throughput for the MSM Clos –
network switch. The best results have been obtained for the CRRD-OG scheme with 4 
iterations. These are respectively: under trans-diagonal traffic pattern - 80% throughput for 
one iteration and 85% throughput for four iterations (Fig. 16) and under bi-diagonal traffic 
pattern – 95% (Fig. 18). Under the bursty packet arrival model the CRRD-OG scheme 
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The SRRD scheme can always achieve 100% throughput under the uniform traffic. 
Unfortunately, due to several arbiters may grant the same request at the same time, the 
performance under nonuniform traffic is degraded. This phenomenon appears because all 
conventional arbiters search in clock-wise direction. To improve the performance of the 
MSM Clos switch under the nonuniform traffic distribution patterns it is necessary to allow 
some round-robin arbiters to search the requests in clockwise direction and anti-clockwise 
direction alternatively, each for one time slot. The 0/1 counter is necessary to keep track of 
time. The counter is incremented by one (mod 2) in each time slot. If counter shows 0 the 
master arbiter ML(i, r) searches one request in clockwise round-robin fashion, otherwise if 
counter shows 1, the master arbiter searches one request in anti-clockwise round-robin 
fashion. 

 
3.6 Performance of CRRD, CMSD, SRRD and CRRD-OG algorithms 

A. Packet Arrival Models 
Two packet arrival models namely the Bernoulli and bursty are considered in simulation 
experiments. In the Bernoulli arrival model cells arrive at each input in slot-by-slot manner 
and the probability that there is a cell arriving in each time slot is identical and independent 
of any other slot. The probability that a cell may arrive in a time slot is denoted by p and is 
referred to as the load of the input. This type of traffic defines a memoryless random arrival 
pattern. 
In the bursty traffic model, each input alternates between active and idle periods. During 
active periods, cells destined for the same output arrive continuously in consecutive time 
slots. The average burst (active period) length is set to 16 cells in our simulations. 
 
B. Traffic distribution models 
We consider several traffic distribution models which determine the probability that a cell 
which arrives at an input will be directed to a certain output. The considered traffic models 
are: 
Uniform traffic – this type of traffic is the most commonly used traffic profile. In the 
uniformly distributed traffic probability pij that a packet from input i will be directed to 
output j is uniformly distributed through all outputs, i.e.: 
 
 = 8  (1) 
 
Trans-diagonal traffic – in this traffic model some outputs have a higher probability of being 
selected, and respective probability pij was calculated according to the following equation: 
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Bi-diagonal traffic – is very similar to the trans-diagonal traffic but packets are directed to 
one of two outputs, and respective probability pij was calculated according to the following 
equation: 
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Chang’s traffic – this model is defined as: 
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The experiments have been carried out for the MSM Clos switching fabric of size 64  64 - 
C(8, 8, 8), and for a wide range of traffic load per input port: from p = 0.05 to p = 1, with the 
step 0.05. The 95% confidence intervals that have been calculated after t-student distribution 
for ten series, per 55000 cycles each (after the starting phase comprising 15000 cycles, which 
enables to reach the stable state of the switching fabric), are at least one order lower than the 
mean value of the simulation results, therefore they are not shown in the figures. We have 
evaluated two performance measures: the average cell delay in time slots and the maximum 
VOQs size for the CRRD, CMSD, SRRD, and CRRD-OG algorithms. The results of the 
simulation under 1 and/or 4 iterations (represented in figures by itr) are shown in the charts 
(Fig. 12-21). In any case, the number of iterations between any IM and CM is one. 
Fig. 12, 14, 16, 18 show the average cell delay in time slots obtained for the uniform, 
Chang’s, trans-diagonal and bi-diagonal traffic patterns, whereas Fig. 13, 15, 17, 19 show the 
maximum VOQ size in a number of cells. To make the charts more clear and lucid only 
results for itr=4 are shown in figures concerning the maximum VOQ size. Fig. 20 and 21 
show the results for the bursty traffic with the average burst length set to 16 cells.  
We can observe that using the Bernoulli traffic and all investigated traffic distribution 
patterns the CRRD-OG algorithm provides better performance than the CRRD, CMSD and 
SRRD algorithms. In many cases the CRRD-OG algorithm with one iteration delivers better 
performance than other algorithms with four iterations (see Fig. 12, 14, 16). The same 
relation between the CRRD-OG scheme and others schemes we can notice under the bursty 
traffic (Fig. 20). 
Under the uniform traffic the SRRD scheme gives only slightly worse results than the 
CRRD-OG scheme; the worst result gives pure CRRD algorithm. The same relation we can 
see in Fig. 13 which shows the comparison of the maximum VOQ size. The biggest buffers 
we need if we control the MSM Clos-network switch using the CRRD algorithm. The 
Chang’s distribution traffic pattern is very similar to the uniform distribution traffic pattern. 
Under this traffic distribution pattern all algorithms receive 100% throughput and CRRD-
OG scheme with one iteration delivers better performance than other algorithms with four 
iterations for the cell delay as well as the maximal VOQ size. (Fig. 14, 15). The trans-diagonal 
and bi-diagonal traffic distribution patterns are highly demanding and the investigated 
packet dispatching schemes cannot provide the 100% throughput for the MSM Clos –
network switch. The best results have been obtained for the CRRD-OG scheme with 4 
iterations. These are respectively: under trans-diagonal traffic pattern - 80% throughput for 
one iteration and 85% throughput for four iterations (Fig. 16) and under bi-diagonal traffic 
pattern – 95% (Fig. 18). Under the bursty packet arrival model the CRRD-OG scheme 
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provides much better performance than other algorithms especially for the very high input 
load (Fig. 20). The same relationship as for the cell delay we can observe for the maximal 
VOQs size (Fig. 13, 15, 17, 19, 21). It is obvious that for small cell delay the size of VOQs will 
be also small. 
The simulation experiments have shown that the CRRD-OG scheme with one iteration gives 
very good results in the average cell delay and VOQs size. An increase in the number of 
iterations do not produce further significant improvement, quite the opposite to other 
iterative algorithms. Particularly more than n/2 iterations do not change significantly the 
performance of all investigated iterative schemes. 
The investigated packet dispatching schemes are based on the effect of desynchronization of 
arbitration pointers in the Clos-network switch. In our research we have made an attempt to 
improve the method of pointers desynchronization for the CRRD-OG scheme, to ensure the 
100% throughput for the nonuniform traffic distribution patterns. Additional pointers and 
arbiters for open grants had been added to the MSM Clos-network switch, but the scheme 
was not able to provide 100% throughput for the nonuniform traffic distribution patterns. 
To our best knowledge it is not possible to achieve very good desynchronization of pointers 
using the methods implemented in the iterative packet dispatching schemes. In our opinion 
the decisions of the distributed arbiters have to be supported by the central arbiter, but the 
implementation of such solution in the real equipment will be very complex. 
 

 
Fig. 12. Average cell delay, uniform traffic 
 
 

 
Fig. 13. Maximum VOQ size, uniform traffic 
 

 
Fig. 14. Average cell delay, Chang’s traffic 
 

 
Fig. 15. Maximum VOQ size, Chang’s traffic 

 
Fig. 16. Average cell delay, trans-diagonal 
traffic 
 

 
Fig. 17. Maximum VOQ size, trans-diagonal  
 

 
Fig. 18. Average cell delay, bi-diagonal 
traffic 

 
Fig. 19. Maximum VOQ size, bi-diagonal 
traffic 
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provides much better performance than other algorithms especially for the very high input 
load (Fig. 20). The same relationship as for the cell delay we can observe for the maximal 
VOQs size (Fig. 13, 15, 17, 19, 21). It is obvious that for small cell delay the size of VOQs will 
be also small. 
The simulation experiments have shown that the CRRD-OG scheme with one iteration gives 
very good results in the average cell delay and VOQs size. An increase in the number of 
iterations do not produce further significant improvement, quite the opposite to other 
iterative algorithms. Particularly more than n/2 iterations do not change significantly the 
performance of all investigated iterative schemes. 
The investigated packet dispatching schemes are based on the effect of desynchronization of 
arbitration pointers in the Clos-network switch. In our research we have made an attempt to 
improve the method of pointers desynchronization for the CRRD-OG scheme, to ensure the 
100% throughput for the nonuniform traffic distribution patterns. Additional pointers and 
arbiters for open grants had been added to the MSM Clos-network switch, but the scheme 
was not able to provide 100% throughput for the nonuniform traffic distribution patterns. 
To our best knowledge it is not possible to achieve very good desynchronization of pointers 
using the methods implemented in the iterative packet dispatching schemes. In our opinion 
the decisions of the distributed arbiters have to be supported by the central arbiter, but the 
implementation of such solution in the real equipment will be very complex. 
 

 
Fig. 12. Average cell delay, uniform traffic 
 
 

 
Fig. 13. Maximum VOQ size, uniform traffic 
 

 
Fig. 14. Average cell delay, Chang’s traffic 
 

 
Fig. 15. Maximum VOQ size, Chang’s traffic 

 
Fig. 16. Average cell delay, trans-diagonal 
traffic 
 

 
Fig. 17. Maximum VOQ size, trans-diagonal  
 

 
Fig. 18. Average cell delay, bi-diagonal 
traffic 

 
Fig. 19. Maximum VOQ size, bi-diagonal 
traffic 
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Fig. 20. Average cell delay, bursty traffic, 
average burst length b=16 

 
Fig. 21. Maximum VOQ size, bursty traffic, 
average burst length b=16 
 

 
4. Packet dispatching algorithms with centralized arbitration 

The packet dispatching algorithms with centralized arbitration use a central arbiter to take 
packet scheduling decisions. Currently, the central arbiters are used to control one-stage 
switching fabrics. This subchapter presents three packet dispatching schemes with 
centralized arbitration for the MSM Clos-network switches. We call these schemes as 
follows: Static Dispatching-First Choice (SD-FC), Static Dispatching-Optimal Choice (SD-
OC) and Input Module - Output Module Matching (IOM).  
Packet switching nodes in the next generation Internet should be ready to support the 
nonuniform/hot spot traffic. Such case often occurs when a popular server is connected to a 
single switch/router port. Under the nonuniform traffic distribution patterns selected VOQs 
store more cells than others. Due to some input buffers may be overloaded, it is necessary to 
implement to a packet dispatching scheme a special mechanism, which is able to send up to 
n cells from IM(i) to OM(j) in the same time slot, in order to unload overloaded buffers. 
Three dispatching schemes presented in this subchapter have such possibility. 
The SD-FC, SD-OC, and IOM schemes make a matching between each IM and OM, taking 
into account the number of cells waiting in VOMQs. Each VOMQ has its own counter  
PV(i, j), which shows the number of cells destined to OM(j). The value of PV(i, j) is increased 
by 1 when a new cell is written into a memory, and decreased by 1 when a cell is sent out to 
OM(j). The algorithms use the central arbiter to indicate the matched pairs of IM(i)-OM(j). 
The set of data sent to the arbiter by each scheme is different, therefore, the architecture and 
functionality of each arbiter is also different. After a matching phase, in the next time slot 
IM(i) is allowed to send up to n cells to the selected OM(j). 
In the SD-OC and SD-FC schemes the central arbiter matches IM(i) and OM(j) only if the 
number of cells buffered in VOMQ(i, j) is at least equal to n. Under the nonuniform traffic 
distribution patterns it happens very often, contrary to the uniform traffic distribution. In 
the proposed packet dispatching schemes each VOMQ has to wait until at least n cells are 
stored before being allowed to make a request. In simulation experiments we consider the 
Clos switching fabric without any expansion, denoted by C(n, n, n), so in description of the 
packet dispatching schemes, k and m parameters are not used. 
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4.1 Static Dispatching 
To reduce latency and avoid starvation, a very simple packet dispatching routine, called 
Static Dispatching (SD), is also used in the MSM Clos-network switch to support SD-FC and 
SD-OC schemes. Under this algorithm, connecting paths in switching fabric are set up 
according to static, but different in each CM, connection patterns (see Fig. 22). These fixed 
connection paths between IMs and OMs eliminate the handshaking process with the second 
stage, and no internal conflicts in the switching fabric will occur. Also no arbitration process 
is necessary. Cells destined to the same OM, but located in different IMs, will be sent 
through different CMs. 

 
Fig. 22. Static connection patterns in CMs, C(3, 3, 3). 
 
In detail, the SD algorithm works as follows: 
o Step 1: According to the connection pattern of IM(i), match all output links LI(i, r) with 

cells from VOMQs.  
o Step 2: Send the matched cells in the next time slot. If there is any unmatched output link, 

it remains idle.  

 
4.2 Static Dispatching-First Choice and Static Dispatching-Optimal Choice Schemes 
The SD-OC and SD-FC schemes are very similar, but the central arbiter matching IMs and 
OMs works in a different way. In both algorithms the PV(i, j) counter, which reaches the 
value equal or greater than n sends the information about an overloaded buffer to the 
central arbiter. In the central arbiter there is a binary matrix representing VOMQs load. If 
the value of matrix element x[i, j]=1, it means that IM(i) has at least n cells that should be 
sent to OM(j). 
In the SD-OC scheme the main task of the central arbiter is to find an optimal set of 1s in the 
matrix. The best case is n 1s, but it is possible to choose only single 1 from column i and row 
j. If there is no such set of 1s the arbiter tries to find a set of n-1 1s, which fulfills the same 
conditions, and so on. The round-robin routine is used for the starting point of the searching 
process. Otherwise, the MSM Clos switching fabric is working under the SD scheme. 
The main difference between the SD-OC and SD-FC lies in the operation of the central 
arbiter. In the SD-FC scheme the central arbiter does not look for the optimal set of 1s, but 
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Fig. 20. Average cell delay, bursty traffic, 
average burst length b=16 

 
Fig. 21. Maximum VOQ size, bursty traffic, 
average burst length b=16 
 

 
4. Packet dispatching algorithms with centralized arbitration 

The packet dispatching algorithms with centralized arbitration use a central arbiter to take 
packet scheduling decisions. Currently, the central arbiters are used to control one-stage 
switching fabrics. This subchapter presents three packet dispatching schemes with 
centralized arbitration for the MSM Clos-network switches. We call these schemes as 
follows: Static Dispatching-First Choice (SD-FC), Static Dispatching-Optimal Choice (SD-
OC) and Input Module - Output Module Matching (IOM).  
Packet switching nodes in the next generation Internet should be ready to support the 
nonuniform/hot spot traffic. Such case often occurs when a popular server is connected to a 
single switch/router port. Under the nonuniform traffic distribution patterns selected VOQs 
store more cells than others. Due to some input buffers may be overloaded, it is necessary to 
implement to a packet dispatching scheme a special mechanism, which is able to send up to 
n cells from IM(i) to OM(j) in the same time slot, in order to unload overloaded buffers. 
Three dispatching schemes presented in this subchapter have such possibility. 
The SD-FC, SD-OC, and IOM schemes make a matching between each IM and OM, taking 
into account the number of cells waiting in VOMQs. Each VOMQ has its own counter  
PV(i, j), which shows the number of cells destined to OM(j). The value of PV(i, j) is increased 
by 1 when a new cell is written into a memory, and decreased by 1 when a cell is sent out to 
OM(j). The algorithms use the central arbiter to indicate the matched pairs of IM(i)-OM(j). 
The set of data sent to the arbiter by each scheme is different, therefore, the architecture and 
functionality of each arbiter is also different. After a matching phase, in the next time slot 
IM(i) is allowed to send up to n cells to the selected OM(j). 
In the SD-OC and SD-FC schemes the central arbiter matches IM(i) and OM(j) only if the 
number of cells buffered in VOMQ(i, j) is at least equal to n. Under the nonuniform traffic 
distribution patterns it happens very often, contrary to the uniform traffic distribution. In 
the proposed packet dispatching schemes each VOMQ has to wait until at least n cells are 
stored before being allowed to make a request. In simulation experiments we consider the 
Clos switching fabric without any expansion, denoted by C(n, n, n), so in description of the 
packet dispatching schemes, k and m parameters are not used. 
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4.1 Static Dispatching 
To reduce latency and avoid starvation, a very simple packet dispatching routine, called 
Static Dispatching (SD), is also used in the MSM Clos-network switch to support SD-FC and 
SD-OC schemes. Under this algorithm, connecting paths in switching fabric are set up 
according to static, but different in each CM, connection patterns (see Fig. 22). These fixed 
connection paths between IMs and OMs eliminate the handshaking process with the second 
stage, and no internal conflicts in the switching fabric will occur. Also no arbitration process 
is necessary. Cells destined to the same OM, but located in different IMs, will be sent 
through different CMs. 

 
Fig. 22. Static connection patterns in CMs, C(3, 3, 3). 
 
In detail, the SD algorithm works as follows: 
o Step 1: According to the connection pattern of IM(i), match all output links LI(i, r) with 

cells from VOMQs.  
o Step 2: Send the matched cells in the next time slot. If there is any unmatched output link, 

it remains idle.  

 
4.2 Static Dispatching-First Choice and Static Dispatching-Optimal Choice Schemes 
The SD-OC and SD-FC schemes are very similar, but the central arbiter matching IMs and 
OMs works in a different way. In both algorithms the PV(i, j) counter, which reaches the 
value equal or greater than n sends the information about an overloaded buffer to the 
central arbiter. In the central arbiter there is a binary matrix representing VOMQs load. If 
the value of matrix element x[i, j]=1, it means that IM(i) has at least n cells that should be 
sent to OM(j). 
In the SD-OC scheme the main task of the central arbiter is to find an optimal set of 1s in the 
matrix. The best case is n 1s, but it is possible to choose only single 1 from column i and row 
j. If there is no such set of 1s the arbiter tries to find a set of n-1 1s, which fulfills the same 
conditions, and so on. The round-robin routine is used for the starting point of the searching 
process. Otherwise, the MSM Clos switching fabric is working under the SD scheme. 
The main difference between the SD-OC and SD-FC lies in the operation of the central 
arbiter. In the SD-FC scheme the central arbiter does not look for the optimal set of 1s, but 

VOMQ(0,0,0)

VOMQ(0,2,2)

IP (0,0)

IP (0,2)

IM (0)

VOMQ(1,0,0)

VOMQ(1,2,2)

IP (1,0)

IP (1,2)

IM (1)

VOMQ(2,0,0)

VOMQ(2,2,2)

IP (2,0)

IP (2,2)

IM (2)

CM (0) OM (0)

CM (1) OM (1)

CM (2) OM (2)

LI (2, 2) LC (2,2)

OP (0,0)

OP (0,2)

OP (1,0)

OP (1,2)

OP (2,0)

OP (2,2)

to OM(0)

to OM(1)

to OM(2)

OP (0,1)

OP (1,1)

OP (2,1)

IP (0,1)

IP (1,1)

IP (2,1)

to OM(1)

to OM(2)

to OM(0)

to OM(2)

to OM(0)

to OM(1)



Switched Systems154

 

tries to match IM(i) with OM(j), choosing the first 1 found in column i and row j. No 
optimization process for selecting IM-OM pairs is employed. In detail, the SD-OC algorithm 
works as follows: 
o Step 1: (each IM): If the value of PV(i, j) counter is equal to or greater than n, send a 

request to the central arbiter.  
o Step 2: (central arbiter): If the central arbiter receives the request from IM(i), it sets the 

value of the buffer load matrix element x[i, j] to 1 (the values of i and j come from the 
counter PV(i, j)).  

o Step 3: (central arbiter): After receiving all requests, the central arbiter tries to find an 
optimal set of 1s, which allows to send the most number of cells from IMs to OMs. The 
central arbiter has to go through all rows of the buffer load matrix to find a set of n 1s 
representing IM(i) and OM(j) matching. If there is not possible to find a set of n 1s it 
attempts to find a set of (n-1) 1s, and so on.  

o Step 4: (each IM): In the next time slot send n cells from IMs to the matched OMs. 
Decrease the value of PV(i, j) by n. For IM-OM pairs not matched by the central arbiter 
use the SD scheme and decrease the value of PV counters by 1.  

The steps in the SD-FC scheme are the same as in the SD-OC scheme, but the optimization 
process in the third step is not carried out. The central arbiter chooses the first 1, which 
fulfill the requirements in each row. The row searched as the first one is selected according 
to the round robin routine. 
 
4.3 Input-Output Module matching algorithm 
The IOM packet dispatching scheme employs also the central arbiter to make a matching 
between each IM and OM. The cells are sent only between IM-OM pairs matched by the 
arbiter. The SD scheme is not used.  
In detail, the IOM algorithm works as follows: 
o Step 1: (each IM): Sort the values of PV(i, j) in descending order. Send to the central 

arbiter a request containing a list of the OMs identifiers. The identifier of OM(j) to which 
VOMQ(i, j) stores the most number of cells should be placed on the list as the first one, 
and the identifier of OM(s) to which VOMQ(i, s) stores the least number of cells should 
be placed on the list as the last one.  

o Step 2: (central arbiter): The central arbiter analyzes one by one the requests received from 
IMs and checks if it is possible to match IM(i) with OM(j), the identifier of which was 
sent as the first one on the list in the request. If the matching is not possible, because the 
OM(j) is matched with other IM, the arbiter selects the next OM on the list. The round-
robin arbitration is employed for selection of IM(i) the request of which is analyzed as 
the first one.  

o Step 3: (central arbiter): The central arbiter sends to each IM confirmation with the 
identifier of OM(t), to which the IM is allowed to send cells.  

o Step 4: (each IM): Match all output links LI(i, r) with cells from VOMQ(i, t). If there is less 
than n cells to be sent to OM(t), some output links remain unmatched.  

o Step 5: (each IM): Decrease the value of PV(i, t) by the number of cells which will be sent 
to OM(t).  

o Step 6: (each IM): In the next time slot send the cells from the matched VOMQ(i, t) to the 
OM(t) selected by the central arbiter.  

 

4.4 Performance of SD-FC, FD-OC and IOM schemes 
The simulation experiments were carried out under the same conditions as the experiments 
for the distributed arbitration (see subchapter 3.6). We have evaluated two performance 
measures: average cell delay in time slots and maximum VOMQs size (we have investigated 
the worst case). The size of the buffers at the input and output side of switching fabric is not 
limited, so cells are not discarded. However, they encounter the delay instead. Because of 
the unlimited size of buffers, no mechanism controlling flow control between the IMs and 
OMs (to avoid buffer overflows) is implemented. The results of the simulation for the 
Bernoulli arrival model are shown in the charts (Fig. 23-32). Fig. 23, 25, 27, 29 show the 
average cell delay in time slots obtained for the uniform, Chang’s, trans-diagonal, bi-
diagonal, and bursty traffic patterns, whereas Fig. 24, 26, 28, 30 show the maximum VOMQ 
size in number of cells. Fig. 31, 32 show the results for the bursty traffic with the average 
burst size b=16, and uniform traffic distribution pattern.  
 

 
Fig. 23. Average cell delay, uniform traffic 
 

 
Fig. 24 The maximum VOMQ size, uniform 
traffic 

 
 
Fig. 25. Average cell delay, Chang’s traffic 

 
Fig. 26. The maximum VOMQ size, Chang’s 
traffic 

 
Fig. 27. Average cell delay, trans-diagonal 

traffic

 
Fig. 28 The maximum VOMQ size, trans-
diagonal traffic 
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tries to match IM(i) with OM(j), choosing the first 1 found in column i and row j. No 
optimization process for selecting IM-OM pairs is employed. In detail, the SD-OC algorithm 
works as follows: 
o Step 1: (each IM): If the value of PV(i, j) counter is equal to or greater than n, send a 

request to the central arbiter.  
o Step 2: (central arbiter): If the central arbiter receives the request from IM(i), it sets the 

value of the buffer load matrix element x[i, j] to 1 (the values of i and j come from the 
counter PV(i, j)).  

o Step 3: (central arbiter): After receiving all requests, the central arbiter tries to find an 
optimal set of 1s, which allows to send the most number of cells from IMs to OMs. The 
central arbiter has to go through all rows of the buffer load matrix to find a set of n 1s 
representing IM(i) and OM(j) matching. If there is not possible to find a set of n 1s it 
attempts to find a set of (n-1) 1s, and so on.  

o Step 4: (each IM): In the next time slot send n cells from IMs to the matched OMs. 
Decrease the value of PV(i, j) by n. For IM-OM pairs not matched by the central arbiter 
use the SD scheme and decrease the value of PV counters by 1.  

The steps in the SD-FC scheme are the same as in the SD-OC scheme, but the optimization 
process in the third step is not carried out. The central arbiter chooses the first 1, which 
fulfill the requirements in each row. The row searched as the first one is selected according 
to the round robin routine. 
 
4.3 Input-Output Module matching algorithm 
The IOM packet dispatching scheme employs also the central arbiter to make a matching 
between each IM and OM. The cells are sent only between IM-OM pairs matched by the 
arbiter. The SD scheme is not used.  
In detail, the IOM algorithm works as follows: 
o Step 1: (each IM): Sort the values of PV(i, j) in descending order. Send to the central 

arbiter a request containing a list of the OMs identifiers. The identifier of OM(j) to which 
VOMQ(i, j) stores the most number of cells should be placed on the list as the first one, 
and the identifier of OM(s) to which VOMQ(i, s) stores the least number of cells should 
be placed on the list as the last one.  

o Step 2: (central arbiter): The central arbiter analyzes one by one the requests received from 
IMs and checks if it is possible to match IM(i) with OM(j), the identifier of which was 
sent as the first one on the list in the request. If the matching is not possible, because the 
OM(j) is matched with other IM, the arbiter selects the next OM on the list. The round-
robin arbitration is employed for selection of IM(i) the request of which is analyzed as 
the first one.  

o Step 3: (central arbiter): The central arbiter sends to each IM confirmation with the 
identifier of OM(t), to which the IM is allowed to send cells.  

o Step 4: (each IM): Match all output links LI(i, r) with cells from VOMQ(i, t). If there is less 
than n cells to be sent to OM(t), some output links remain unmatched.  

o Step 5: (each IM): Decrease the value of PV(i, t) by the number of cells which will be sent 
to OM(t).  

o Step 6: (each IM): In the next time slot send the cells from the matched VOMQ(i, t) to the 
OM(t) selected by the central arbiter.  

 

4.4 Performance of SD-FC, FD-OC and IOM schemes 
The simulation experiments were carried out under the same conditions as the experiments 
for the distributed arbitration (see subchapter 3.6). We have evaluated two performance 
measures: average cell delay in time slots and maximum VOMQs size (we have investigated 
the worst case). The size of the buffers at the input and output side of switching fabric is not 
limited, so cells are not discarded. However, they encounter the delay instead. Because of 
the unlimited size of buffers, no mechanism controlling flow control between the IMs and 
OMs (to avoid buffer overflows) is implemented. The results of the simulation for the 
Bernoulli arrival model are shown in the charts (Fig. 23-32). Fig. 23, 25, 27, 29 show the 
average cell delay in time slots obtained for the uniform, Chang’s, trans-diagonal, bi-
diagonal, and bursty traffic patterns, whereas Fig. 24, 26, 28, 30 show the maximum VOMQ 
size in number of cells. Fig. 31, 32 show the results for the bursty traffic with the average 
burst size b=16, and uniform traffic distribution pattern.  
 

 
Fig. 23. Average cell delay, uniform traffic 
 

 
Fig. 24 The maximum VOMQ size, uniform 
traffic 

 
 
Fig. 25. Average cell delay, Chang’s traffic 

 
Fig. 26. The maximum VOMQ size, Chang’s 
traffic 

 
Fig. 27. Average cell delay, trans-diagonal 

traffic

 
Fig. 28 The maximum VOMQ size, trans-
diagonal traffic 
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Fig. 29. Average cell delay, bi-diagonal traffic 
 
 

 
Fig. 30. The maximum VOMQ size, bi-
diagonal traffic 

 
Fig. 31. Average cell delay,  bursty traffic 
 

 
Fig. 32. The maximum VOMQ size, bursty 
traffic 
 

We can see that the MSM Clos-network switch with all the schemes proposed achieves 100% 
throughput for all kinds of investigated traffic distribution patterns under Bernoulli arrival 
model and for the bursty traffic. The average cell delay is less than 10 for wide range of 
input load, regardless of the traffic distribution pattern. It is a very interesting result 
especially for the trans-diagonal and bi-diagonal traffic patterns. Both traffic patterns are 
highly demanding and many packet dispatching schemes proposed in the literature cannot 
provide the 100% throughput for the investigated switching fabric. For the bursty traffic, the 
average cell delay grows very similar to linear function of input load with the maximum 
value less than 150. We can see that the very complicated arbitration routine used in the SD-
OC scheme does not improve the performance of the MSM Clos-network switch. In some 
cases the results are even worse than for IOM scheme (the trans-diagonal traffic with very 
high input load and the bursty traffic – Fig. 27 and 31). Generally, the IOM scheme gives 
higher latency than the SD schemes, especially for low to medium input load. It is due to 
matching IM(i) to that OM(j) to which it is possible to send the most number of cells. As a 
consequence, it is less probable to match IM-OM pairs to serve one or two cells per cycle. 
The size of VOMQ in the MSM Clos switching network depends on the traffic distribution 
pattern. For all presented packet distribution schemes and the uniform and Chang’s traffic 
the maximum size of VOMQ is less than 140 cells. It means that in the worst case, the 
average number of cell waiting for transmission to particular output was not bigger than 16. 
For the trans-diagonal traffic and the IOM scheme the maximum size of VOMQ is less than 
200, but for the SD-OC and SD-FC the size is greater and come to 700 and 3000 respectively. 
For the bi-diagonal traffic the smallest size of VOMQ was obtained for the SD-OC scheme - 
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less than 290. For the bursty traffic the maximal size of VOMQ comes to: 750 for the SD-FC, 
500 for the SD-OC and 350 for the IOM scheme. 

 
5. Related Works 

The field of packet scheduling in VOQ switches boasts of an extensive literature. Many 
algorithms are applicable to the single-stage (crossbar) switches and are not useful for 
packet dispatching in the MSM Clos-network switches. Some of them are more oriented to 
implementation, whereas others are of more theoretical significance. Here we review a 
representation of the works concerning packet dispatching in the MSM Clos-network 
switches. 
 
Pipeline-Based Concurrent Round Robin Dispatching 
E. Oki at al. have proposed in (Oki at al., 2002b) the Pipeline-Based Concurrent Round Robin 
Dispatching (PCRRD) scheme for the Clos-network switches. The algorithm can relax the 
strict timing constraint required by the CRRD and CMSD schemes. These algorithms have 
constrained dispatching scheduling to one cell slot. The constraint is a bottleneck when the 
switch capacity increases. The PCRRD scheme is able to relax the scheduling time into more 
than one time slot, however nk2 request counters and P subschedulers have to be used to 
support the dispatching algorithm. Each subscheduler is allowed to take more than one time 
slot for packet scheduling, whereas one of them provides the dispatching result every time 
slot. The subschedulers adopt the CRRD algorithm, but other schemes (like CMSD) may be 
also adopted. Both, the centralized and non-centralized implementations of the algorithm 
are possible. In the centralized approach, each subscheduler is connected to all IMs. In the 
non-centralized approach, the subschedulers are implemented in different locations i.e. in 
IMs and CMs. The PCRRD algorithm provides 100% throughput under uniform traffic and 
ensures that cells from the same VOQ are transmitted in sequence.  
Maximum Weight Matching Dispatching 
The Maximum Weight Matching Dispatching scheme (MWMD) for the MSM Clos-network 
switches was proposed by R. Rojas-Cessa at al. in (Rojas-Cassa at al., 2004). The scheme is 
based on the maximum weight matching algorithm implemented in input-buffered single-
stage switches. To perform the MWMD scheme each IM(i) has k virtual output-module 
queues (VOMQs) to eliminate HOL blocking. VOMQs are used instead of VOQs and 
VOMQ(i, j) stores cells at IM(i) destined to OM(j). Each VOMQ is associated with m request 
queues (RQ), each denoted as RQ(i, j, r). The request queue RQ(i, j, r) is located in IM(i) and 
stores requests of cells destined for OM(j) through CM(r) and keeps the waiting time  
W(i, j,r). The waiting time represents the number of slots a head-of-line request has been 
waiting. When a cell enters VOMQ(i, j), the request is randomly distributed and stored in 
RQ(i, j, r) among m request queues. A request in RQ(i, j, r) is not related to a specific cell but 
to VOMQ(i, j). A cell is sent from VOMQ(i, j) to OM(j) in a FIFO manner when a request in 
RQ(i, j, r) is granted.  
The MWMD scheme uses a central scheduler which consists of m subschedulers, denoted as 
S(r). Each subscheduler is responsible for selecting requests related to cells which can be 
transmitted through CM(r) at the next time slot e.g.: subscheduler S(0) selects up to k 
requests from k2 RQs, where corresponding cells to the selected RQs are transmitted through 
CM(0) at the next time slot. S(r) selects one request from each IM and one request to each 
OM according to the Oldest-Cell-First (OCF) algorithm. The OCF algorithm uses the waiting 
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Fig. 29. Average cell delay, bi-diagonal traffic 
 
 

 
Fig. 30. The maximum VOMQ size, bi-
diagonal traffic 

 
Fig. 31. Average cell delay,  bursty traffic 
 

 
Fig. 32. The maximum VOMQ size, bursty 
traffic 
 

We can see that the MSM Clos-network switch with all the schemes proposed achieves 100% 
throughput for all kinds of investigated traffic distribution patterns under Bernoulli arrival 
model and for the bursty traffic. The average cell delay is less than 10 for wide range of 
input load, regardless of the traffic distribution pattern. It is a very interesting result 
especially for the trans-diagonal and bi-diagonal traffic patterns. Both traffic patterns are 
highly demanding and many packet dispatching schemes proposed in the literature cannot 
provide the 100% throughput for the investigated switching fabric. For the bursty traffic, the 
average cell delay grows very similar to linear function of input load with the maximum 
value less than 150. We can see that the very complicated arbitration routine used in the SD-
OC scheme does not improve the performance of the MSM Clos-network switch. In some 
cases the results are even worse than for IOM scheme (the trans-diagonal traffic with very 
high input load and the bursty traffic – Fig. 27 and 31). Generally, the IOM scheme gives 
higher latency than the SD schemes, especially for low to medium input load. It is due to 
matching IM(i) to that OM(j) to which it is possible to send the most number of cells. As a 
consequence, it is less probable to match IM-OM pairs to serve one or two cells per cycle. 
The size of VOMQ in the MSM Clos switching network depends on the traffic distribution 
pattern. For all presented packet distribution schemes and the uniform and Chang’s traffic 
the maximum size of VOMQ is less than 140 cells. It means that in the worst case, the 
average number of cell waiting for transmission to particular output was not bigger than 16. 
For the trans-diagonal traffic and the IOM scheme the maximum size of VOMQ is less than 
200, but for the SD-OC and SD-FC the size is greater and come to 700 and 3000 respectively. 
For the bi-diagonal traffic the smallest size of VOMQ was obtained for the SD-OC scheme - 
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less than 290. For the bursty traffic the maximal size of VOMQ comes to: 750 for the SD-FC, 
500 for the SD-OC and 350 for the IOM scheme. 
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The field of packet scheduling in VOQ switches boasts of an extensive literature. Many 
algorithms are applicable to the single-stage (crossbar) switches and are not useful for 
packet dispatching in the MSM Clos-network switches. Some of them are more oriented to 
implementation, whereas others are of more theoretical significance. Here we review a 
representation of the works concerning packet dispatching in the MSM Clos-network 
switches. 
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strict timing constraint required by the CRRD and CMSD schemes. These algorithms have 
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switch capacity increases. The PCRRD scheme is able to relax the scheduling time into more 
than one time slot, however nk2 request counters and P subschedulers have to be used to 
support the dispatching algorithm. Each subscheduler is allowed to take more than one time 
slot for packet scheduling, whereas one of them provides the dispatching result every time 
slot. The subschedulers adopt the CRRD algorithm, but other schemes (like CMSD) may be 
also adopted. Both, the centralized and non-centralized implementations of the algorithm 
are possible. In the centralized approach, each subscheduler is connected to all IMs. In the 
non-centralized approach, the subschedulers are implemented in different locations i.e. in 
IMs and CMs. The PCRRD algorithm provides 100% throughput under uniform traffic and 
ensures that cells from the same VOQ are transmitted in sequence.  
Maximum Weight Matching Dispatching 
The Maximum Weight Matching Dispatching scheme (MWMD) for the MSM Clos-network 
switches was proposed by R. Rojas-Cessa at al. in (Rojas-Cassa at al., 2004). The scheme is 
based on the maximum weight matching algorithm implemented in input-buffered single-
stage switches. To perform the MWMD scheme each IM(i) has k virtual output-module 
queues (VOMQs) to eliminate HOL blocking. VOMQs are used instead of VOQs and 
VOMQ(i, j) stores cells at IM(i) destined to OM(j). Each VOMQ is associated with m request 
queues (RQ), each denoted as RQ(i, j, r). The request queue RQ(i, j, r) is located in IM(i) and 
stores requests of cells destined for OM(j) through CM(r) and keeps the waiting time  
W(i, j,r). The waiting time represents the number of slots a head-of-line request has been 
waiting. When a cell enters VOMQ(i, j), the request is randomly distributed and stored in 
RQ(i, j, r) among m request queues. A request in RQ(i, j, r) is not related to a specific cell but 
to VOMQ(i, j). A cell is sent from VOMQ(i, j) to OM(j) in a FIFO manner when a request in 
RQ(i, j, r) is granted.  
The MWMD scheme uses a central scheduler which consists of m subschedulers, denoted as 
S(r). Each subscheduler is responsible for selecting requests related to cells which can be 
transmitted through CM(r) at the next time slot e.g.: subscheduler S(0) selects up to k 
requests from k2 RQs, where corresponding cells to the selected RQs are transmitted through 
CM(0) at the next time slot. S(r) selects one request from each IM and one request to each 
OM according to the Oldest-Cell-First (OCF) algorithm. The OCF algorithm uses the waiting 
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time W(i, j, r) which is kept by each RQ(i, j, r) queue. S(r) finds a match M(r) at each time 
slot, so that the sum of W(i, j, r) for all i and j, and a particular r is maximized. It should be 
stressed that each subscheduler behaves independently and concurrently, and uses only k2 
W(i, j, r) to find M(r).  
When RQ(i, j, r) is granted by S(r), the HOL request in RQ(i, j, r) is dequeued and a cell from 
VOMQ(i, j) is sent at the next time slot. The cell is one of the HOL cells in VOMQ(i, j). The 
number of cells sent to OMs is equal to the number of granted requests by all subschedulers. 
R. Cessa at al. has proved that the MWMD algorithm achieves 100% throughput for all 
admissible independent arrival processes without internal bandwidth expansion, i.e. n=m 
for the Clos MSM network.  
 
Maximal Oldest Cell First Matching Dispatching 
The Maximal Oldest-cell first Matching Dispatching (MOMD) scheme was proposed by R. 
Rojas-Cessa at al. in (Rojas-Cassa at al., 2004). The algorithm has lower complexity for a 
practical implementation than MWMD scheme. The MOMD scheme uses the same queues 
arrangement as MWMD scheme: k VOMQs at each IM, each denoted as VOMQ(i, j) and m 
request queues, RQs, each associated with a VOMQ, each denoted as RQ(i, j, r). Each cell 
enters a VOMQ(i, j) gets a time stamp. A request with the time stamp is stored in RQ(i, j, r), 
where r is randomly selected. The distribution of the requests can also be done in the round-
robin fashion among RQs. The MOMD uses distributed arbiters in IMs and CMs. In each IM, 
there are m output-link arbiters, and in each CM there are k arbiters, each of which 
corresponds to a particular OM. To determine the matching between VOMQ(i, j) and the 
output link LI(i, r) each non-empty RQ(i, j, r) sends a request to the unmatched output link 
arbiter associated to LI(i, r). The request includes the time stamp of the associated cell 
waiting at the HOL to be sent. Each output-link arbiter chooses one request by selecting the 
oldest time stamp, and sends the grant to the selected RQ and VOMQ. Then, each LI(i, r) 
sends the request to the CM(r) belonging to the selected VOMQ. Each round-robin arbiter 
associated with OM(j) grants one request with the oldest time stamp and sends the grant to 
LI(i, r) of IM(i). If an IM receives a grant from a CM, the IM sends a HOL cell from that 
VOMQ at the next time slot. There is possible to consider more iteration between IM and 
CM within the time slot.  
The delay and throughput performance of 64×64 Clos-network switch, where n=m=k=8 
under MOMD scheme are presented in (Rojas-Cassa at al., 2004). The scheme cannot achieve 
the 100% throughput under uniform traffic with a single IM-CM iteration. The simulation 
shows that CRRD scheme is more effective under uniform traffic than the MOMD, as the 
CRRD achieves high throughput with one iteration. However, as the number of IM-CM 
iterations increases, the MOMD scheme gets higher throughput e.g. in the switch under 
simulation, the number of iterations to provide 100% throughput is four. The MOMD 
scheme can provide high throughput under a nonuniform traffic pattern (opposite to the 
CRRD scheme), called unbalanced, but the number of IM-CM iterations has to be increased 
to eight. The unbalanced traffic pattern has one fraction of traffic with uniform distribution 
and the other faction w of traffic destined to the output with the same index number as the 
input; when w=0, the traffic is uniform; when w=1 the traffic is totally directional. 
 
 
 

 

Frame Occupancy-Based Random Dispatching and Frame Occupancy-Based Concurrent 
Round-Robin Dispatching 
The Frame occupancy-based Random Dispatching (FRD) and Frame occupancy-based 
Concurrent Round-Robin Dispatching (FCRRD) schemes were proposed by C-B. Lin and R. 
Rojas-Cessa in (Lin & Rojas-Cessa, 2005). Frame based scheduling with fixed-size frames 
was first introduced to improve switching performance in one-stage input-queued switches. 
C-B. Lin and R. Rojas-Cessa adopted captured-frame concept for the MSM Clos-network 
switches using RD and CRRD schemes as the basic dispatching algorithms. The frame 
concept is related to a VOQ and means the set of one or more cells in a VOQ that are eligible 
for dispatching. Only the HOL cell of the VOQ is eligible per time slot. The captured fame 
size is equal to the cell occupancy at VOQ(i, j, l) at the time tc of matching the last cell of the 
frame associated to VOQ(i, j, l). Cells arriving to VOQ(i, j, l) at time td, where td>tc, are 
considered for matching if a new frame is captured. Each VOQ has a captured-frame size 
counter denoted as CFi,j,l(t). The value of this counter indicates the frame size at time slot t. 
The CFi,j,l(t) counter takes a new value when the last cell of the current frame of VOQ(i, j, l) is 
matched. Within the FCRRD scheme the arbitration process includes two phases and the 
request-grant-accept approach is implemented. The achieved match is kept during the frame 
duration. 
The FRD and FCRRD schemes show higher performance under uniform and several 
nonuniform traffic patterns, as compared to the RD and CRRD algorithms. What’s more the 
FCRRD scheme with two iterations is sufficient to achieve a high switching performance. 
The hardware and timing complexity of the FCRRD is comparable to that of the CRRD.  
 

Maximal Matching Static Desynchronization Algorithm 
The Maximal Matching Static Desynchronization algorithm (MMSD) was proposed by J. 
Kleban and H. Santos in (Kleban & Santos, 2007). The MMSD scheme uses the distributed 
arbitration with the request-grant-accept handshaking approach but minimizes the number 
of iterations to one. The key idea of the MMSD scheme is static desynchronization of 
arbitration pointers. To avoid collisions in the second stage, all IMs use connection patterns 
that are static but different in each IM; it forces cells destined to the same OM, but located in 
different IMs, to be sent through other CMs. In the MMSD scheme two phases are 
considered for dispatching from the first to the second stage. In the first phase each IM 
selects up to m VOMQs and assigns them to IM output links. In the second phase requests 
associated with output links are sent from IM to CM. The arbitration results are sent from 
CMs to IMs, so the matching between IMs and CMs can be completed. If there is more than 
one request for the same output link in a CM, a request is granted from this IM which 
should use a given CM for connection to an appropriate OM, according to the fixed IM 
connection pattern. If requests come from other IMs, CM grants one request randomly. In 
each IM(i) there is one group pointer PG(i, h) and one PV(i, v) pointer, where 0  v  nk – 1. 
In CM(r), there are k round robin arbiters, and each of them corresponds to LC(r, j) – an 
output link to the OM(j) – and has its own pointer PC(r, j).  
The performance results obtained for the MMSD algorithm are better or comparable with 
results obtained for other algorithms, but the scheme is less hardware-demanding and 
seems to be implementable with the current technology in the three-stage Clos-network 
switches. 
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time W(i, j, r) which is kept by each RQ(i, j, r) queue. S(r) finds a match M(r) at each time 
slot, so that the sum of W(i, j, r) for all i and j, and a particular r is maximized. It should be 
stressed that each subscheduler behaves independently and concurrently, and uses only k2 
W(i, j, r) to find M(r).  
When RQ(i, j, r) is granted by S(r), the HOL request in RQ(i, j, r) is dequeued and a cell from 
VOMQ(i, j) is sent at the next time slot. The cell is one of the HOL cells in VOMQ(i, j). The 
number of cells sent to OMs is equal to the number of granted requests by all subschedulers. 
R. Cessa at al. has proved that the MWMD algorithm achieves 100% throughput for all 
admissible independent arrival processes without internal bandwidth expansion, i.e. n=m 
for the Clos MSM network.  
 
Maximal Oldest Cell First Matching Dispatching 
The Maximal Oldest-cell first Matching Dispatching (MOMD) scheme was proposed by R. 
Rojas-Cessa at al. in (Rojas-Cassa at al., 2004). The algorithm has lower complexity for a 
practical implementation than MWMD scheme. The MOMD scheme uses the same queues 
arrangement as MWMD scheme: k VOMQs at each IM, each denoted as VOMQ(i, j) and m 
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under MOMD scheme are presented in (Rojas-Cassa at al., 2004). The scheme cannot achieve 
the 100% throughput under uniform traffic with a single IM-CM iteration. The simulation 
shows that CRRD scheme is more effective under uniform traffic than the MOMD, as the 
CRRD achieves high throughput with one iteration. However, as the number of IM-CM 
iterations increases, the MOMD scheme gets higher throughput e.g. in the switch under 
simulation, the number of iterations to provide 100% throughput is four. The MOMD 
scheme can provide high throughput under a nonuniform traffic pattern (opposite to the 
CRRD scheme), called unbalanced, but the number of IM-CM iterations has to be increased 
to eight. The unbalanced traffic pattern has one fraction of traffic with uniform distribution 
and the other faction w of traffic destined to the output with the same index number as the 
input; when w=0, the traffic is uniform; when w=1 the traffic is totally directional. 
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CMs to IMs, so the matching between IMs and CMs can be completed. If there is more than 
one request for the same output link in a CM, a request is granted from this IM which 
should use a given CM for connection to an appropriate OM, according to the fixed IM 
connection pattern. If requests come from other IMs, CM grants one request randomly. In 
each IM(i) there is one group pointer PG(i, h) and one PV(i, v) pointer, where 0  v  nk – 1. 
In CM(r), there are k round robin arbiters, and each of them corresponds to LC(r, j) – an 
output link to the OM(j) – and has its own pointer PC(r, j).  
The performance results obtained for the MMSD algorithm are better or comparable with 
results obtained for other algorithms, but the scheme is less hardware-demanding and 
seems to be implementable with the current technology in the three-stage Clos-network 
switches. 
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The modified MSM Clos switching fabric with SDRUB packet dispatching scheme 
The modified MSM Clos switching fabric and a very simple packet dispatching scheme, 
called Static Dispatching with Rapid Unload of Buffers (SDRUB) were proposed by J. Kleban 
at al. in (Kleban at al., 2007). The main idea of modification of the MSM Clos switching 
fabric lies in connecting bufferless CMs to the two-stage buffered switching fabric so as to 
give the possibility of rapid unload of VOMQs. In this way an expansion in IMs and OMs is 
used. The maximum number of connected CMs is equal to m-1, but it is possible to use less 
CMs. In practice, the number of CMs significantly influences the performance of the 
switching fabric. The number of CMs depends on the traffic distribution pattern to be 
served. Contrary to the MSM Clos switching fabric, in the modified architecture, at each 
time slot, it is possible to send one cell from each IM to each OM due to direct connecting 
path between IMs and OMs. The arbitration is necessary for rapid unload of buffers only. 
In the SDRUB scheme each VOMQ has its own counter PV(i, r) which shows the number of 
cells destined to OM(r). The SDRUB algorithm uses a central arbiter to indicate the IMs 
which are allowed to send cells through CMs. Assume that there is (y-1) CMs in the 
modified MSM Clos switching fabric. When PV(i, r) reaches the value equal or greater than 
y, it sends the information about the overloaded buffer to the central arbiter. In the central 
arbiter there is a binary matrix of buffers load. If the value of matrix element x[i, j] is 1, it 
means that IM(i) can send y cells to OM(j), one through the direct connection and y-1 
through CMs. The central arbiter changes the value of element x[i, j] from 0 to 1 only if it is 
the first 1 in column i and row j. In other cases the request is rejected. The OM to which IM(i) 
sends cells using CMs is selected according to the round robin routine. No other 
optimization process for selecting IM-OM pairs for buffers rapid unload is employed. 
Simulation experiments have shown that the modified MSM Clos switching fabric achieves 
very good performance under uniform as well as nonuniform traffic distribution patterns. 
To manage the trans-diagonal traffic effectively, it is necessary to implement at least n/2 
CMs. For such number of CMs the switching fabric achieves 100% throughput but any 
smaller number of CMs reduces the throughput of the switching fabric. Under the bi-
diagonal traffic the SDRUB algorithm can achieve 100% throughput only when the 
maximum number of CMs is used. It is obvious that when the number of CMs increases, the 
throughput increases proportionally. For the uniform traffic pattern the SDRUB scheme 
gives very good results for one CM. 
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1. Introduction 

Computer clusters or grids constructed from open and standard commercial off the shelf 
(COTS) systems now dominate the top 500 supercomputer sites (Top500, 2008), providing 
an attractive way to rapidly construct high performance computing (HPC) systems of 
interconnected nodes. The largest of these HPC systems are now driving toward petascale 
deployments, delivering petaflops of computational capacity and petabytes of storage 
capacity. However, designing and building these large HPC systems involves significant 
challenges, including: 

 Rapidly building and expanding the computational capacity of HPC clusters to meet 
growing demands  

 Increasing levels of computational density while staying within constrained envelopes 
of power and cooling 

 Reducing complexity and cost for physical infrastructure and management 

 Implementing interconnect technology that can connect hundreds or thousands of 
processors without introducing unacceptable levels of latency 

Interconnect technology plays a vital role in addressing all of these issues. InfiniBand has 
emerged as a compelling interconnect technology, and now provides more scalability and 
significantly better cost-performance than any other known fabric. In spite of its ability to 
provide high-speed connectivity and low latency, connecting and cabling thousands of 
compute nodes with smaller discrete InfiniBand switches remains problematic. With 
traditional approaches, the largest HPC clusters can require hundreds of switches, as well as 
thousands of ports and cables for inter-switch connectivity alone. The result can be 
significant added cost and complexity, not to mention energy and space consumption. 

To address these challenges, the Sun Datacenter Switch 3456 (DS3456) system (Sun 
Microsystems, 2007) provides the world’s largest standards-based DDR (dual data rate) 
InfiniBand switch, with direct capacity to host up to 3,456 server nodes. Only slightly larger 
than two conventional datacenter racks, the system drastically reduces the cost, power, and 
footprint of deploying very large-scale standards-based high performance computing 

8



Switched Systems164

 

fabrics. DS3456 is tightly integrated with the Sun Blade 6048 modular rack system (Sun 
Microsystems, 2008) which supports InfiniBand leaf switch, facilitating deployment of HPC 
systems up to 13,824 Nodes. Together these technologies offer low latency, high compute 
density, reduced cabling and management complexity, and lower power consumption than 
with other solutions. 

Given this new large switch system, an important issue that needs to be addressed is the 
quantification of the associated RAS features. In this study, we developed a hierarchical 
Markov availability model (Trivedi, 2001) for DS3456 to assess its reliability, availability, 
and serviceability (RAS), using RAScad (Tang et al., 2002), a Sun internal RAS modeling tool 
that supports hierarchical modeling and automatic model generation.  

The rest of this chapter is organized as follows: Section 2 gives an overview of Sun DS3456; 
Section 3 defines RAS metrics; Section 4 describes the model and parameters; Section 5 
presents results and analysis; and Section 6 concludes the study. 

 
2. Overview of DS3456 

InfiniBand is a technology developed to address low-latency, high-performance, and low 
overhead communications between servers and I/O devices. It defines an architecture of 
networking principles – switching and routing – to provide a scalable, high-performance 
server I/O fabric (Cisco Systems, 2006). InfiniBand is a loss-less interconnect providing 
ordered packet delivery across the fabric through the use of credit-based flow-control. To 
ensure data integrity, its end-to-end protocols include fault tolerant features such as link-
level and end-to-end CRC, packet re-transmission, multi-path routing, and automatic path 
migration. Upper-layer protocols, built on top of these provisions, allow seamless fit into 
existing networking and storage protocols. In addition, QoS (Quality of Service) and 
congestion control mechanisms are natively included in InfiniBand. All of these provide an 
excellent, converged fabrics solution for running storage, networking and clustering traffic. 

DS3456 is the world’s largest InfiniBand switch system, with capacity for connection of up 
to 3,456 nodes. The basic switch element used in DS3456 is the InfiniScale III (IS3) 24-port 
InfiniBand switch chip (Mellanox Technologies, 2009). The DDR version of IS3 supports 16 
Gbps per 4x port, delivering up to 768 Gbps of aggregate bandwidth. The chip architecture 
features an intelligent non-blocking packet switch design with an advanced scheduling 
engine that provides QoS with switching latencies of less than 140 nanoseconds. DS3456 has 
been deployed in several HPC systems, including Ranger, the world No. 6 HPC system with 
peak performance of 579.4TFlops (Top500, 2008), located at Texas Advanced Computing 
Center, University of Texas at Austin. 

Figure 1 is the physical view of DS3456. The major high-level DS3456 components and 
related RAS features are listed as follows. 

 Twenty-four horizontally-installed line cards with each providing 48 12x connectors 
delivering 144 DDR 4x InfiniBand ports. Each line card connects to pass-through 
connectors in a passive orthogonal midplane. 

 Eighteen vertically-installed fabric cards directly connected to the line cards through 
the orthogonal midplane. Each fabric card also features eight modular high-

 

performance fans that provide front-to-back cooling for the chassis. The eight fans are 
N+1 redundant and hot swappable. 

 Two fully-redundant chassis management controller cards (CMCs) monitoring all 
critical chassis functions including power, cooling, line cards, fabric cards, and fan 
modules. CMC is hot swappable. 

 Sixteen power supply units (PSUs) divided into two banks of eight units, with each 
bank providing N+1 redundant PSUs to half the line cards and half the fabric cards. 
PSU is hot swappable. 

 

 
Fig. 1. DS3456 Physical View 
 
Figure 2 shows the connectivity between line cards and fabric cards for DS3456. The passive 
midplane provides 432 8x8 orthogonal connectors arrayed in an 18x24 grid. Each line card 
contains 24 IS3 switch chips, 12 interfacing to the midplane, and 12 interfacing to the 12x 
connectors at the front of line card. A total of 144 4x InfiniBand ports are provided by each 
line card, expressed as 48 physical 12x connectors. Each fabric card contains eight IS3 switch 
chips connected to the midplane, providing interconnect between different line cards. 

Thus, a communication path starts from an external port connected to an IS3 chip at the 
bottom row of a line card, goes through an IS3 chip at the top row of the same line card, an 
IS3 chip on a fabric card, two IS3 chips on the destination line card (one at the top row and 
one at the bottom row), and ends at another external port connected to the destination IS3 
chip. That is, a message packet goes through as many as five stages of switch from the 
source port to the destination port. 
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Fig. 2. DS3456 Internal Connectivity 

 
3. RAS metrics defined 

To quantify RAS for the target system, we first define RAS metrics and related concepts in 
this section. For simplicity, the capacity of the target system is assumed to be fully used, i.e., 
all 3,456 ports of the switch are utilized to connect server nodes. 

 
3.1 Reliability 
Connectivity between the server nodes using the switch for communication is a reliability 
measure for the switch system. A connectivity failure is defined as the loss of 
communication between a server node physically connected to the switch and another 
server node physically connected to the same switch due to hardware problems in the 
switch. We use Mean Time Between Connectivity Failures (MTBCF) to quantify reliability for 
the switch system. 

A line card or fabric card failure would cause partial communication paths in the switch to 
be unavailable. Unavailability of partial paths caused by a fabric card failure does not affect 
connectivity as paths that were routed across the faulty fabric card can be re-routed to the 
operational fabric cards. Unavailability of partial paths caused by a line card failure may or 

 

may not translate to connectivity failures, depending on redundancy in the interconnect 
topology between the switch and server nodes. 

• Non-redundancy case. If each server node connects to only one port on the switch, a 
line card failure would result in connectivity failures for some of the server nodes 
connected to the switch. 

• Redundancy case. Typically, each server node connects to two or four ports on 
different line cards in the switch. In this case, unavailability of partial paths caused by 
the failure of one line card does not generate any connectivity failures. 

3.2 Availability 
The traditional availability definition is the proportion of time that the system is operational 
and delivering required services. At any time point, the system is in either an up or a down 
state. However, for a degradable system, the system can be in a partially available state. For 
the non-redundancy case of DS3456, unavailability of partial paths does not disable the 
function of the entire switch, but degrades system capacity. Thus, the system can be in 
partially available states, in addition to the fully available and failure states. For instance, 
when a line card fails, paths related to the faulty line card (out of 24 line cards) are 
unavailable and the system capacity is reduced by 1/24. Therefore, we defined availability 
for this state as 23/24. The RAScad performability (Trivedi, 2001) evaluation capability is 
used to generate this performance-oriented availability. 

 
3.3 Service cost 
In traditional service strategies, every component failure in the system translates to a service 
call. For such a large system as DS3456, replacing a line card or fabric card is particularly 
time consuming, because it may take several hours for the system to complete the restart 
process after a power-off repair. It is thus desirable to reduce service frequency as much as 
possible. 

Previous studies showed that adoption of deferred repair service strategies for redundant 
components can greatly reduce unscheduled service events and associated system 
downtime (Sun, 2005). In this study, we once again analyzed the effect of deferred repair on 
system availability and service cost for the redundancy case. We use Unscheduled Mean Time 
Between Services (U_MTBS) to quantify service cost for the switch system. 

 
3.4 Failure rate estimation 
These metrics are calculated from a system-level RAS model built by utilizing information 
on the system configuration and its RAS characteristics (redundancy, hot or cold swap, etc.), 
applying a failure rate to each component, and then integrating them into the model. These 
failure rates are estimated from previous field data using the field-based Mean Time Between 
Failures (MTBF) prediction method described below where MTBF = 1/failure rtae. 

Field-Based MTBF Prediction Method ― The Field Replaceable Unit (FRU) MTBFs are 
calculated using methods described in Telcordia TR-NWT-000332 (Telcordia Technologies, 
2001) with lower component-level (ICs, resistors, capacitors, etc.) failure rates adjusted 
based on field data, or directly estimated from field data, or provided by the OEM vendors. 
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The field data used to calibrate component failure rates were collected from tens of 
thousands of Sun field systems with billions of cumulative operating hours. This approach 
is called the Sun field-based MTBF prediction method. 

 
4. RAS model and parameters 

Similar to many studies of this type, we assumed independent failures on different 
components and constant failure rates. The target system is modeled as a hierarchy of 
Markov chains. The top level model is shown in Figure 3.  In a RAScad Markov model, the 
user can define three reward vectors for each state, as displayed in the circles representing 
states (Tang & Trivedi, 2004): (1) Availability (0 or 1), (2) Performance (≥ 0), and (3) Service 
Cost (≥ 0). 

The first reward vector is used to calculate system availability. The second reward vector is 
used to calculate system performability. The third reward vector is used to calculate annual 
service cost or service call rate. In the DS3456 model, up to two failures of line card and 
fabric card, which have impact on system performability (for the non-redundancy case), 
were modeled in detail. The notation used in the models is explained as follow: 

 
Fig. 3. Top level Markov model 
 
• Ok: state in which the system is functioning properly (no faults) 
• 1LC: state in which one line card has failed 
• 2LC: state in which two line cards have failed 
• 1FC: state in which one fabric card has failed 
• 2FC: state in which two fabric cards have failed 
• LC_FC: state in which one line card and one fabric card have failed 
• Repair: state in which the system is shutdown to replace faulty line card or fabric card 

 

• Other_Fail: state in which the system is down due to other hardware component failures 
• NL: number of line cards in the system (18) 
• NF: number of fabric cards in the system (24) 
• Twaiting: service waiting time – waiting for off-peak hours to repair the system (8 hours) 
• Trepair: repair time including restart time (6 hours) 
• La_LC: failure rate for line card (1/900K hours) 
• La_FC: failure rate for fabric card (1/300K hours) 
• La_other: system failure rate due to other hardware faults (calculated from submodel) 
• Mu_other: system repair rate for other hardware faults (calculated from submodel) 

When one or more line/fabric cards have failed (states 1LC, 1FC, 2LC, 2FC, and LC_FC), the 
system is scheduled to be shutdown for repair after a service waiting time. For the non-
redundancy case, these states may be degraded states, as shown by the performance reward 
vector in these states (P1L, P2L, etc.). For the redundancy case, these states are still fully 
functioning states, as shown by the availability reward vector in the states (all values are 1). 

In Figure 3, the gray color rectangle box represents the interface between the current model 
and the submodel called DS3456 Other. All hardware components other than line cards and 
fabric cards are included in the submodel (details are not discussed in this chapter). If a 
system failure occurs due to hardware problems other than line card and fabric card faults, 
the system goes from the Ok state to the Other_Fail state. The associated failure rate 
(La_other) and repair rate (Mu_other) are bound to the submodel output Lambda1 and Mu1 
which are the equivalent failure rate and repair rate (Lanus et al., 2003) of the submodel. 

The model parameters, as listed above, were estimated using the Sun field-based MTBF 
prediction method discussed in Section 3.4 or based on engineering judgements. The repair 
time was estimated to be 6 hours because the system restart time is long. 

 
5. Analysis of results 

In this section, we present RAS results for the target system, including basic results, interval 
results (assuming deferred repair), and uncertainty analysis on key parameters. 

 
5.1 Basic results 
Table 1 shows the steady-state system level results evaluated from the DS3456 model by 
RAScad. The results show that for the redundancy case, MTBCF is much longer than that for 
the non-redundancy case. That is, with two or four redundant ports on different line cards, 
the system reliability is high in terms of connectivity. But this is not the case for system 
availability due to the large number of line/fabric cards and the long duration of power-off 
repair time of these cards. The system availability is similar for both redundancy and non-
redundancy cases. This is because the system unavailability is dominated by power-off 
repair events, which are common for both cases. In other words, the system unavailability is 
not significantly affected by the degraded states for the non-redundancy case. 

Configuration U_MTBS (hours) MTBCF (hours) Availability 
Non-redundancy 5,937 9,679 0.999372 
Redundancy 5,937 3.23E6 0.999398 

Table 1. Steady-state results for DS3456 
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A high availability DS3456 configuration typically implements interconnect between a 
server node and two (2-way redundancy) or four (4-way redundancy) different line cards, 
utilizing standard 4x InfiniBand ports. In the following, our discussion is focused on the 4-
way redundancy configuration. To investigate which components in the system contribute 
most to the system unavailability (or downtime) and service events, we did a breakdown 
analysis as shown in Figures 4 and 5. 

 
Fig. 4. Distribution  of system downtime 
 

 
Fig. 5. Distribution of service events 
 
Figure 4 shows that the system unavailability is dominated by shutdown repairs for faulty 
line cards and fabric cards. Figure 5 shows that the service events are mostly due to the 

 

following components: line cards, fans, fabric cards, and power supply units. Deferred 
repair of these components, if possible, could significantly reduce unscheduled service 
events and system downtimes. For the 4-way redundancy configuration, we can tolerate at 
least two line card or fabric card failures without losing any connectivity. Since every eight 
fans (N+1 redundant) are associated with a fabric card, we can also tolerate the failure of 
two fans associated with a line card (equivalent to a line card failure) or three fans 
otherwise. 

 
5.2 Deferred repair 
Given these thresholds of component failures that can be tolerated without degrading 
system performance, the following deferred repair service strategy is proposed for the target 
system. The system is serviced periodically, referenced as scheduled service, according to a 
predefined maintenance schedule, to repair all the components that have failed since the last 
service event. During the time window between two scheduled services, an unscheduled 
service is triggered upon any of the following events: 

• Two line cards have failed. 
• Two fabric cards have failed. 
• One line card and one fabric card have failed. 
• Two fans associated with a fabric card or any three fans have failed. 
• Any other hardware component failures that stop the functioning of system (e.g., failure 
of two PSUs in a power bank). 

The Markov model in Figure 3 can be easily modified to model this deferred repair service 
strategy by removing the transition from state 1LC to state Repair and the transition from 
state 1FC to state Repair. That is, no repair action is taken upon a failure of line card or 
fabric card. In addition, one of the submodels in the hierarchy, the fan model, also needs to 
be modified, as shown in Figure 6. In the diagram, La_fan is the fan failure rate and N is the 
total number of fans in the system. The failure of two fans associated with a fabric card is 
modeled by the transition from state 1Fan_Down to state Repair. The failure of any three 
fans is modeled by the transition from state 2Fan_Down to state Repair. 
 

 
Fig. 6. Deferred repair model for fans 
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Table 2 shows the interval system-level results for different service strategies generated by 
RAScad. Our previous study (Tang & Trivedi, 2004) showed that the interval availability 
(average availability for a time interval from 0 to T) and associated measures, such as 
interval failure rate and interval service call rate, instead of steady-state measures, should be 
used for systems with deferred repair. In the table, “Deferred, 3 months” means a deferred 
repair service strategy with a periodic maintenance schedule of three months. 
 

Service Strategy U_MTBS (hours) Unscheduled 
Yearly Downtime 

No deferred repair 5,937 hr. 5 hr. 16.25 min. 
Deferred, 1 month 41,992 hr. 11.44 min. 
Deferred, 3 months 33,527 hr. 29.98 min. 
Deferred, 6 months 26,941 hr. 52.04 min. 

Table 2. Interval results for DS3456 under different service strategies 
 
The table indicates that adoption of the proposed deferred repair service strategies can 
significantly reduce unscheduled service events as well as system downtime. With a 
quarterly maintenance schedule, the unscheduled MTBS is five times longer and the 
unscheduled system downtime is reduced by 90%. With a monthly maintenance schedule, 
the unscheduled MTBS is seven times longer and the unscheduled system downtime is 
reduced by 96%. 

Although the system reliability and unscheduled downtime can be further improved by 
increasing maintenance frequency, the scheduled downtime (6 hours for each maintenance 
event) will also increase, leading to lower overall system availability. Given a tradeoff 
between system reliability and availability, we recommend deferred repair service strategies 
with a maintenance time window of 1 to 3 months. 

 
5.3 Uncertainty analysis 
Two key parameters in the model are the line card and fabric card failure rates. How 
sensitive are the results to the variance of these parameters? To answer this question, we 
performed an uncertainty analysis using RAScad. In each experiment of the analysis, the 
two parameters were randomly selected from the ±50% range of the estimated mean value, 
respectively, to generate a point of result. The sample size is 1,000. Figure 7 and Figure 8 
plot the results for the “Deferred, 3 months” service strategy. 

Figure 7 shows that for unscheduled MTBS, the 90% confidence interval is (26856, 40979), 
with the mean of 33,490 hours. That is, U_MTBS is likely to vary about ±20% around the 
mean when the uncertainty of the two key parameters is ±50%. Figure 8 shows that for 
unscheduled yearly downtime, the 90% confidence interval is (12.8, 52.7), with the mean of 
30.5 minutes. That is, the system availability is most likely to stay at the 0.9999 level 
(equivalent to 5.3 to 53 minutes of yearly downtime), given the ±50% uncertainty of the two 
key parameters. Notice the slight difference between these means estimated from the 
simulations and those calculated numerically in Table 2. This is due to the nature of random 
sampling in simulations. 
 

 

 
Fig. 7. Uncertainty analysis plot for U_MTBS 
 

 
Fig. 8. Uncertainty analysis plot for yearly downtime 

 
6. Conclusion 

In this chapter, we presented a reliability, availability, and serviceability modeling and 
analysis, against hardware faults, for the Sun Datacenter Switch 3456 system, the world’s 
largest InfiniBand switch system. To our knowledge, this is the first effort in RAS modeling 
of such a large switch system. The study demonstrated how the hierarchical Markov 
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modeling approach can be used on large switch systems to reduce model complexity and 
therefore the feasibility of RAS quantification for large switch systems. 

The results show that the system reliability, in terms of connectivity between the server 
nodes physically connected to the switch, is high for configurations with redundant ports 
(MTBCF > 3 million hours). The study also investigated the RAS benefits of practicing 
deferred repair service strategies and identified optimal maintenance time windows. 
Adoption of our recommended service strategies can significantly reduce unscheduled 
service events (five to seven times longer U_MTBS) and system downtime (by 90% to 96%). 
Finally, an uncertainty analysis was performed to study the sensitivity of results to the 
variance of key parameters. The analysis generated 90% confidence intervals of system RAS 
measures for the ±50% uncertainty of two key parameters. 
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